862 resultados para blurred image restoration
Resumo:
Diplomityössä on käsitelty paperin pinnankarkeuden mittausta, joka on keskeisimpiä ongelmia paperimateriaalien tutkimuksessa. Paperiteollisuudessa käytettävät mittausmenetelmät sisältävät monia haittapuolia kuten esimerkiksi epätarkkuus ja yhteensopimattomuus sileiden papereiden mittauksissa, sekä suuret vaatimukset laboratorio-olosuhteille ja menetelmien hitaus. Työssä on tutkittu optiseen sirontaan perustuvia menetelmiä pinnankarkeuden määrittämisessä. Konenäköä ja kuvan-käsittelytekniikoita tutkittiin karkeilla paperipinnoilla. Tutkimuksessa käytetyt algoritmit on tehty Matlab® ohjelmalle. Saadut tulokset osoittavat mahdollisuuden pinnankarkeuden mittaamiseen kuvauksen avulla. Parhaimman tuloksen perinteisen ja kuvausmenetelmän välillä antoi fraktaaliulottuvuuteen perustuva menetelmä.
Resumo:
This thesis gives an overview of the use of the level set methods in the field of image science. The similar fast marching method is discussed for comparison, also the narrow band and the particle level set methods are introduced. The level set method is a numerical scheme for representing, deforming and recovering structures in an arbitrary dimensions. It approximates and tracks the moving interfaces, dynamic curves and surfaces. The level set method does not define how and why some boundary is advancing the way it is but simply represents and tracks the boundary. The principal idea of the level set method is to represent the N dimensional boundary in the N+l dimensions. This gives the generality to represent even the complex boundaries. The level set methods can be powerful tools to represent dynamic boundaries, but they can require lot of computing power. Specially the basic level set method have considerable computational burden. This burden can be alleviated with more sophisticated versions of the level set algorithm like the narrow band level set method or with the programmable hardware implementation. Also the parallel approach can be used in suitable applications. It is concluded that these methods can be used in a quite broad range of image applications, like computer vision and graphics, scientific visualization and also to solve problems in computational physics. Level set methods and methods derived and inspired by it will be in the front line of image processing also in the future.
Resumo:
In this paper we use a Terahertz (THz) time-domain system to image and analyze the structure of an artwork attributed to the Spanish artist Goya painted in 1771. The THz images show features that cannot be seen with optical inspection and complement data obtained with X-ray imaging that provide evidence of its authenticity, which is validated by other independent studies. For instance, a feature with a strong resemblance with one of Goya"s known signatures is seen in the THz images. In particular, this paper demonstrates the potential of THz imaging as a complementary technique along with X-ray for the verification and authentication of artwork pieces through the detection of features that remain hidden to optical inspection.
Resumo:
Tärkeä tehtävä ympäristön tarkkailussa on arvioida ympäristön nykyinen tila ja ihmisen siihen aiheuttamat muutokset sekä analysoida ja etsiä näiden yhtenäiset suhteet. Ympäristön muuttumista voidaan hallita keräämällä ja analysoimalla tietoa. Tässä diplomityössä on tutkittu vesikasvillisuudessa hai vainuja muutoksia käyttäen etäältä hankittua mittausdataa ja kuvan analysointimenetelmiä. Ympäristön tarkkailuun on käytetty Suomen suurimmasta järvestä Saimaasta vuosina 1996 ja 1999 otettuja ilmakuvia. Ensimmäinen kuva-analyysin vaihe on geometrinen korjaus, jonka tarkoituksena on kohdistaa ja suhteuttaa otetut kuvat samaan koordinaattijärjestelmään. Toinen vaihe on kohdistaa vastaavat paikalliset alueet ja tunnistaa kasvillisuuden muuttuminen. Kasvillisuuden tunnistamiseen on käytetty erilaisia lähestymistapoja sisältäen valvottuja ja valvomattomia tunnistustapoja. Tutkimuksessa käytettiin aitoa, kohinoista mittausdataa, minkä perusteella tehdyt kokeet antoivat hyviä tuloksia tutkimuksen onnistumisesta.
Resumo:
Geophysical tomography captures the spatial distribution of the underlying geophysical property at a relatively high resolution, but the tomographic images tend to be blurred representations of reality and generally fail to reproduce sharp interfaces. Such models may cause significant bias when taken as a basis for predictive flow and transport modeling and are unsuitable for uncertainty assessment. We present a methodology in which tomograms are used to condition multiple-point statistics (MPS) simulations. A large set of geologically reasonable facies realizations and their corresponding synthetically calculated cross-hole radar tomograms are used as a training image. The training image is scanned with a direct sampling algorithm for patterns in the conditioning tomogram, while accounting for the spatially varying resolution of the tomograms. In a post-processing step, only those conditional simulations that predicted the radar traveltimes within the expected data error levels are accepted. The methodology is demonstrated on a two-facies example featuring channels and an aquifer analog of alluvial sedimentary structures with five facies. For both cases, MPS simulations exhibit the sharp interfaces and the geological patterns found in the training image. Compared to unconditioned MPS simulations, the uncertainty in transport predictions is markedly decreased for simulations conditioned to tomograms. As an improvement to other approaches relying on classical smoothness-constrained geophysical tomography, the proposed method allows for: (1) reproduction of sharp interfaces, (2) incorporation of realistic geological constraints and (3) generation of multiple realizations that enables uncertainty assessment.