999 resultados para beta-thalassemia
Resumo:
The first spectroscopic study for the beta decay of N-21 is carried out based on beta-n, beta-gamma, and beta-n-gamma coincidence measurements. The neutron-rich N-21 nuclei are produced by the fragmentation of the E/A=68.8 MeV Mg-26 primary beam on a thick Be-9 target and are implanted into a thin plastic scintillator that also plays the role of beta detector. The time of flight of the emitted neutrons following the beta decay are measured by the surrounding neutron sphere and neutron wall arrays. In addition, four clover germanium detectors are used to detect the beta-delayed gamma rays. Thirteen new beta-delayed neutron groups are observed with a total branching ratio of 90.5 +/- 4.2%. The half-life for the beta decay of N-21 is determined to be 82.9 +/- 7.5 ms. The level scheme of O-21 is deduced up to about 9 MeV excitation energy. The experimental results for the beta decay of N-21 are compared to the shell-model calculations.
Resumo:
Previous experimental results of (EC+beta(+)) decay for the medium-heavy nuclei reported by our group since 1996, including Er-153, Yb-157, Fr-209, Ce-128, Ce-130, and Pr-128 have been briefly summarized. The observed low-lying states in their daughter nuclei have been reviewed in a systematic way and compared with different model calculations. Finally, some questions have been put forward for further study and discussion.
Resumo:
Baryon magnetic moments of p, n, Sigma(+), Sigma(-), Xi(0), Xi(-) and the beta decay ratios (G(A)/G(V)) of n -> p, Sigma(-) -> n and Xi(0) -> Sigma(+) are calculated in a colored quark cluster model. With SU(3) breaking, the model gives a good fit to the experimental values of those baryon magnetic moments and the beta decay ratios. Our results show that the orbital motion has a significant contribution to the spin and magnetic moments of those baryons and the strange component. in nucleon is small.
Resumo:
The beta-delayed neutron and gamma energy spectra taken from the decay of neutron-rich nucleus N-21 were measured by using the beta - gamma and beta - n coincidence detection method. Thirteen new neutron groups ranging from 0.28MeV to 4.98 MeV and with a total branching ratio of 88.7 +/- 4.2% were observed and presented. One gamma transition with an energy of 1222 keV emitted from the excited state of O-21, and four gamma transitions with energies of 1674, 2397, 2780, and 3175 keV emitted from the excited states of O-20 were identified in the 3 decay chain of N-21. The beta decay half-life for N-21 is determined to be 82.9 +/- 1.9 ms. The uncertainty of half-life is much smaller than the previous result.
Resumo:
The basic process of an exotic decay mode namely P-delayed fission is simply introduced. The progress status of the study in the world is essentialized. The observation of P-delayed fission of Ac-228 is reported. The radium was radiochemically separated from natural thorium. Thin Ra sources in which Ac-228 was got through Ra-228 ->(beta-) Ac-228 were prepared for observing fission fragments from beta-delayed fission Ac-228. They exposed to the mica fission track detectors, and measured by an HPGe gamma-ray detector. The beta-delayed fission events of Ac-228 were observed and its beta-delayed fission probability was found to be (5 +/- 2) x 10(-12).
Resumo:
The beta-delayed neutron and gamma spectra of neutron-rich nucleus N-21 using beta-gamma and beta-n coincidence measurements were presented in this paper. Thirteen new neutron groups ranging from 0.28 MeV to 4.98 MeV and with a total branching ratio 88.7 +/- 4.2% were observed. One gamma transition among the excited states of O-21 and foury transitions among the excited states of O-20 were identified in the beta decay chain of N-21. The ungated half-life of 83.8 +/- 2.1 ms was also determined for N-21.
Resumo:
The research of the in-beam efficiency calibration of Neutron Detector Array of Peking University using N-17 and C-16 beams was introduced in this paper. The efficiency of neutron wall and ball are comparable to the foreign similar devices and neutrons can be detected from low to high energies in high efficiency.
Resumo:
The history of experimental study on beta-delayed proton decays in the rare-earth region was simply reviewed. The physical results of the beta-delayed proton decays obtained at IMP, Lanzhou over the last 10 years were summarized, mainly including the first observation of 9 new beta-delayed proton precursors along the odd-Z proton drip line and the new data for 2 waiting-point nuclei in the rp-process. The results were compared and discussed with different nuclear model calculations. Finally, the perspective in near future was briefly introduced.
Resumo:
The gamma rays following the beta(+)/EC decay of Ir-176,Ir-178 nuclei have been investigated using in-beam gamma-ray experiment. In addition, with the aid of a helium-jet recoil fast tape transport system, the beta(+)/EC decay of Ir-176 was further studied, the new gamma rays were proved and a low-spin isomer was proposed in Ir-176. The isomeric state was analysized according to the systematics in neighboring nuclei.
Resumo:
Radium was radiochemically separated from natural thorium. Thin Ra-228 ->beta Ac-228 sources were prepared and exposed to mica fission track detectors, and measured by an HPGe gamma-ray detector. The beta-delayed fission events of Ac-228 were observed and its beta-delayed fission probability was found to be (5 +/- 2)x10(-12).
Resumo:
Sm-133 was produced via fusion evaporation in the reaction Ca-40+Ru-96. Its P-delayed proton decay was studied by means of "p-gamma" coincidence in combination with a He-jet tape transport system, including half-lives, proton energy spectra, gamma-transitions following the proton emissions, and the branching ratios to the low-lying states in the grand-daughter nuclei. The possible spins and parities of 133Sm were extracted by fitting the experimental data with a statistical model calculation. The configuration-constrained nuclear potential energy surfaces of Sm-133 were calculated by using the Woods-Saxon Strutinsky method. Comparing the experimental and calculated results, the spins and parities Of Sm-133 were assigned to be 5/2(+) and 1/2(-), which is reconciled with our published simple (EC+beta(+)) decay scheme Of Sm-113 in 2001. In addition, our experimental data on the beta-delayed proton decay of Yb-149 reported in Eur. Phys. J., 2001, A12: 1-4 was also analyzed by using the same method. The spin and parity of Yb-149 was assigned to be 1/2-.
Resumo:
The proton-rich isotope Sm-133 was produced via the fusion evaporation reaction Ca-40 + Ru-96. Its beta-delayed proton decay was studied by p-gamma coincidence in combination with a He-jet tape transport system, and half-lives, proton energy spectra, gamma-transitions following the proton emission, as well as beta-delayed proton branching ratios to the low-lying states in the grand-daughter nucleus were determined. Comparing the observed beta-delayed proton branching ratios with statistical model calculations, the best agreement is found assuming that only one level with the spin of 3/2 in Sm-133 decays or two levels with the spins of 1/2 and 5/2 decay with similar half-lives. The configuration-constrained nuclear potential energy surfaces of Sm-133 were calculated using the Woods-Saxon-Strutinsky method, which suggests a 1/2-ground state and a 5/2(+) isomer with an excitation energy of 120 keV. Therefore, the simple(EC+beta(+)) decay scheme of Sm-133 in Eur. Phys. J.A 11,277(2001) has been revised. In addition, our previous experimental data on the beta-delayed proton decay of Yb-149 reported in Eur. Phys. J. A 12,1 ( 2 0 0 1) was also analyzed using the same method. The spin-parity of Yb-149 is suggested to be 1/2(-).