487 resultados para backscatter
Resumo:
SARAL/AltiKa GDR-T are analyzed to assess the quality of the significant wave height (SWH) measurements. SARAL along-track SWH plots reveal cases of erroneous data, more or less isolated, not detected by the quality flags. The anomalies are often correlated with strong attenuation of the Ka-band backscatter coefficient, sensitive to clouds and rain. A quality test based on the 1Hz standard deviation is proposed to detect such anomalies. From buoy comparison, it is shown that SARAL SWH is more accurate than Jason-2, particularly at low SWH, and globally does not require any correction. Results are better with open ocean than with coastal buoys. The scatter and the number of outliers are much larger for coastal buoys. SARAL is then compared with Jason-2 and Cryosat-2. The altimeter data are extracted from the global altimeter SWH Ifremer data base, including specific corrections to calibrate the various altimeters. The comparison confirms the high quality of SARAL SWH. The 1Hz standard deviation is much less than for Jason-2 and Cryosat-2, particularly at low SWH. Furthermore, results show that the corrections applied to Jason-2 and to Cryosat-2, in the data base, are efficient, improving the global agreement between the three altimeters.
Resumo:
A two-step etching technique for fine-grained calcite mylonites using 0.37% hydrochloric and 0.1% acetic acid produces a topographic relief which reflects the grain boundary geometry. With this technique, calcite grain boundaries become more intensely dissolved than their grain interiors but second phase minerals like dolomite, quartz, feldspars, apatite, hematite and pyrite are not affected by the acid and therefore form topographic peaks. Based on digital backscatter electron images and element distribution maps acquired on a scanning electron microscope, the geometry of calcite and the second phase minerals can be automatically quantified using image analysis software. For research on fine-grained carbonate rocks (e.g. dolomite calcite mixtures), this low-cost approach is an attractive alternative to the generation of manual grain boundary maps based on photographs from ultra-thin sections or orientation contrast images.
Resumo:
A radar scatterometer operates by transmitting a pulse of microwave energy toward the ocean's surface and measuring the normalized (per-unit-surface) radar backscatter coefficient (σ°). The primary application of scatterometry is the measurement of near-surface ocean winds. By combining σ° measurements from different azimuth angles, the 10 m vector wind can be determined through a Geophysical Model Function (GMF), which relates wind and backscatter. This paper proposes a mission concept for the measurement of both oceanic winds and surface currents, which makes full use of earlier C-band radar remote sensing experience. For the determination of ocean currents, in particular, the novel idea of using two chirps of opposite slope is introduced. The fundamental processing steps required to retrieve surface currents are given together with their associated accuracies. A detailed description of the mission proposal and comparisons between real and retrieved surface currents are presented. The proposed ocean Doppler scatterometer can be used to generate global surface ocean current maps with accuracies better than 0.2 m/s at a spatial resolution better than 25 km (i.e., 12.5 km spatial sampling) on a daily basis. These maps will allow gaining some insights on the upper ocean mesoscale dynamics. The work lies at a frontier, given that the present inability to measure ocean currents from space in a consistent and synoptic manner represents one of the greatest weaknesses in ocean remote sensing.
Resumo:
Aircraft altimeter and in situ measurements are used to examine relationships between altimeter backscatter and the magnitude of near-surface wind and friction velocities. Comparison of altimeter radar cross section with wind speed is made through the modified Chelton-Wentz algorithm. Improved agreement is found after correcting 10-m winds for both surface current and atmospheric stability. An altimeter friction velocity algorithm is derived based on the wind speed model and an open-ocean drag coefficient. Close agreement between altimeter- and in situ-derived friction velocities is found. For this dataset, quality of the altimeter inversion to surface friction velocity is comparable to that for adjusted winds and clearly better than the inversion to true 10-m wind speed.
Resumo:
International audience
Resumo:
This study presents the preliminary results of MINEPLAT survey, organized by Universidade de Évora in partnership with Instituto Português do Mar e da Atmosfera (IPMA) based on an integrated analysis of geophysical data namely, ultra-high resolution seismic data (UHRS), multibeam data, backscatter data and magnetic data. The survey took place on north Alentejo continental shelf (30 to 200 meters depth) between Tróia and Sines. The interpretation and integration of the acquired data allows substantial improvement on the knowledge on the morphology and geology of the surface and subsurface of the Alentejo continental shelf towards the assessment of the mineral resources potential in the continental shelf off Alentejo and of the environmental conditions caused by the tectonic uplift in the Pliocene-Quaternary.
Resumo:
CALIPSO (Cloud-Aerosol Lidar and Pathfinder Satellite Observations) Level 3 (CL3) data were compared against EARLINET (European Aerosol Research Lidar Network) monthly averages obtained by profiles during satellite overpasses. Data from EARLINET stations of Évora, Granada, Leipzig, Naples and Potenza, equipped with advanced multi-wavelength Raman lidars were used for this study. Owing to spatial and temporal differences, we reproduced the CL3 filtering rubric onto the CALIPSO Level 2 data. The CALIPSO monthly mean profiles following this approach are called CALIPSO Level 3*, CL3*. This offers the possibility to achieve direct comparable datasets. In respect to CL3 data, the agreement typically improved, in particular above the areas directly affected by the anthropogenic activities within the planetary boundary layer. However in most of the cases a subtle CALIPSO underestimation was observed with an average bias of 0.03 km-1. We investigated the backscatter coefficient applying the same screening criteria, where the mean relative difference in respect to the extinction comparison improved from 15.2% to 11.4%. Lastly, the typing capabilities of CALIPSO were assessed outlining the importance of the correct aerosol type (and associated lidar ratio value) assessment to the CALIPSO aerosol properties retrieval.