963 resultados para automatic target detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic analysis of human behaviour in large collections of videos is gaining interest, even more so with the advent of file sharing sites such as YouTube. However, challenges still exist owing to several factors such as inter- and intra-class variations, cluttered backgrounds, occlusion, camera motion, scale, view and illumination changes. This research focuses on modelling human behaviour for action recognition in videos. The developed techniques are validated on large scale benchmark datasets and applied on real-world scenarios such as soccer videos. Three major contributions are made. The first contribution is in the area of proper choice of a feature representation for videos. This involved a study of state-of-the-art techniques for action recognition, feature extraction processing and dimensional reduction techniques so as to yield the best performance with optimal computational requirements. Secondly, temporal modelling of human behaviour is performed. This involved frequency analysis and temporal integration of local information in the video frames to yield a temporal feature vector. Current practices mostly average the frame information over an entire video and neglect the temporal order. Lastly, the proposed framework is applied and further adapted to real-world scenario such as soccer videos. A dataset consisting of video sequences depicting events of players falling is created from actual match data to this end and used to experimentally evaluate the proposed framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detection canines represent the fastest and most versatile means of illicit material detection. This research endeavor in its most simplistic form is the improvement of detection canines through training, training aids, and calibration. This study focuses on developing a universal calibration compound for which all detection canines, regardless of detection substance, can be tested daily to ensure that they are working with acceptable parameters. Surrogate continuation aids (SCAs) were developed for peroxide based explosives along with the validation of the SCAs already developed within the International Forensic Research Institute (IFRI) prototype surrogate explosives kit. Storage parameters of the SCAs were evaluated to give recommendations to the detection canine community on the best possible training aid storage solution that minimizes the likelihood of contamination. Two commonly used and accepted detection canine imprinting methods were also evaluated for the speed in which the canine is trained and their reliability. As a result of the completion of this study, SCAs have been developed for explosive detection canine use covering: peroxide based explosives, TNT based explosives, nitroglycerin based explosives, tagged explosives, plasticized explosives, and smokeless powders. Through the use of these surrogate continuation aids a more uniform and reliable system of training can be implemented in the field than is currently used today. By examining the storage parameters of the SCAs, an ideal storage system has been developed using three levels of containment for the reduction of possible contamination. The developed calibration compound will ease the growing concerns over the legality and reliability of detection canine use by detailing the daily working parameters of the canine, allowing for Daubert rules of evidence admissibility to be applied. Through canine field testing, it has been shown that the IFRI SCAs outperform other commercially available training aids on the market. Additionally, of the imprinting methods tested, no difference was found in the speed in which the canines are trained or their reliability to detect illicit materials. Therefore, if the recommendations discovered in this study are followed, the detection canine community will greatly benefit through the use of scientifically validated training techniques and training aids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gunshot residue (GSR) is the term used to describe the particles originating from different parts of the firearm and ammunition during the discharge. A fast and practical field tool to detect the presence of GSR can assist law enforcement in the accurate identification of subjects. A novel field sampling device is presented for the first time for the fast detection and quantitation of volatile organic compounds (VOCs). The capillary microextraction of volatiles (CMV) is a headspace sampling technique that provides fast results (< 2 min. sampling time) and is reported as a versatile and high-efficiency sampling tool. The CMV device can be coupled to a Gas Chromatography-Mass Spectrometry (GC-MS) instrument by installation of a thermal separation probe in the injection port of the GC. An analytical method using the CMV device was developed for the detection of 17 compounds commonly found in polluted environments. The acceptability of the CMV as a field sampling method for the detection of VOCs is demonstrated by following the criteria established by the Environmental Protection Agency (EPA) compendium method TO-17. The CMV device was used, for the first time, for the detection of VOCs on swabs from the hands of shooters, and non-shooters and spent cartridges from different types of ammunition (i.e., pistol, rifle, and shotgun). The proposed method consists in the headspace extraction of VOCs in smokeless powders present in the propellant of ammunition. The sensitivity of this method was demonstrated with method detection limits (MDLs) 4-26 ng for diphenylamine (DPA), nitroglycerine (NG), 2,4-dinitrotoluene (2,4-DNT), and ethyl centralite (EC). In addition, a fast method was developed for the detection of the inorganic components (i.e., Ba, Pb, and Sb) characteristic of GSR presence by Laser Induced Breakdown Spectroscopy (LIBS). Advantages of LIBS include fast analysis (~ 12 seconds per sample) and good sensitivity, with expected MDLs in the range of 0.1-20 ng for target elements. Statistical analysis of the results using both techniques was performed to determine any correlation between the variables analyzed. This work demonstrates that the information collected from the analysis of organic components has the potential to improve the detection of GSR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of reactive oxygen species (ROS) within cells causes damage to biomolecules, including membrane lipids, DNA, proteins and sugars. An important type of oxidative damage is DNA base hydroxylation which leads to the formation of 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodG) and 5-hydroxymethyluracil (5-HMUra). Measurement of these biomarkers in urine is challenging, due to the low levels of the analytes and the matrix complexity. In order to simultaneously quantify 8-oxodG and 5-HMUra in human urine, a new, reliable and powerful strategy was optimised and validated. It is based on a semi-automatic microextraction by packed sorbent (MEPS) technique, using a new digitally controlled syringe (eVolH), to enhance the extraction efficiency of the target metabolites, followed by a fast and sensitive ultrahigh pressure liquid chromatography (UHPLC). The optimal methodological conditions involve loading of 250 mL urine sample (1:10 dilution) through a C8 sorbent in a MEPS syringe placed in the semi-automatic eVolH syringe followed by elution using 90 mL of 20% methanol in 0.01% formic acid solution. The obtained extract is directly analysed in the UHPLC system using a binary mobile phase composed of aqueous 0.1% formic acid and methanol in the isocratic elution mode (3.5 min total analysis time). The method was validated in terms of selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), extraction yield, accuracy, precision and matrix effect. Satisfactory results were obtained in terms of linearity (r2 . 0.991) within the established concentration range. The LOD varied from 0.00005 to 0.04 mg mL21 and the LOQ from 0.00023 to 0.13 mg mL21. The extraction yields were between 80.1 and 82.2 %, while inter-day precision (n=3 days) varied between 4.9 and 7.7 % and intra-day precision between 1.0 and 8.3 %. This approach presents as main advantages the ability to easily collect and store urine samples for further processing and the high sensitivity, reproducibility, and robustness of eVolHMEPS combined with UHPLC analysis, thus retrieving a fast and reliable assessment of oxidatively damaged DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stroke stands for one of the most frequent causes of death, without distinguishing age or genders. Despite representing an expressive mortality fig-ure, the disease also causes long-term disabilities with a huge recovery time, which goes in parallel with costs. However, stroke and health diseases may also be prevented considering illness evidence. Therefore, the present work will start with the development of a decision support system to assess stroke risk, centered on a formal framework based on Logic Programming for knowledge rep-resentation and reasoning, complemented with a Case Based Reasoning (CBR) approach to computing. Indeed, and in order to target practically the CBR cycle, a normalization and an optimization phases were introduced, and clustering methods were used, then reducing the search space and enhancing the cases re-trieval one. On the other hand, and aiming at an improvement of the CBR theo-retical basis, the predicates` attributes were normalized to the interval 0…1, and the extensions of the predicates that match the universe of discourse were re-written, and set not only in terms of an evaluation of its Quality-of-Information (QoI), but also in terms of an assessment of a Degree-of-Confidence (DoC), a measure of one`s confidence that they fit into a given interval, taking into account their domains, i.e., each predicate attribute will be given in terms of a pair (QoI, DoC), a simple and elegant way to represent data or knowledge of the type incomplete, self-contradictory, or even unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collecting and analysing data is an important element in any field of human activity and research. Even in sports, collecting and analyzing statistical data is attracting a growing interest. Some exemplar use cases are: improvement of technical/tactical aspects for team coaches, definition of game strategies based on the opposite team play or evaluation of the performance of players. Other advantages are related to taking more precise and impartial judgment in referee decisions: a wrong decision can change the outcomes of important matches. Finally, it can be useful to provide better representations and graphic effects that make the game more engaging for the audience during the match. Nowadays it is possible to delegate this type of task to automatic software systems that can use cameras or even hardware sensors to collect images or data and process them. One of the most efficient methods to collect data is to process the video images of the sporting event through mixed techniques concerning machine learning applied to computer vision. As in other domains in which computer vision can be applied, the main tasks in sports are related to object detection, player tracking, and to the pose estimation of athletes. The goal of the present thesis is to apply different models of CNNs to analyze volleyball matches. Starting from video frames of a volleyball match, we reproduce a bird's eye view of the playing court where all the players are projected, reporting also for each player the type of action she/he is performing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, there has been exponential growth in using virtual spaces, including dialogue systems, that handle personal information. The concept of personal privacy in the literature is discussed and controversial, whereas, in the technological field, it directly influences the degree of reliability perceived in the information system (privacy ‘as trust’). This work aims to protect the right to privacy on personal data (GDPR, 2018) and avoid the loss of sensitive content by exploring sensitive information detection (SID) task. It is grounded on the following research questions: (RQ1) What does sensitive data mean? How to define a personal sensitive information domain? (RQ2) How to create a state-of-the-art model for SID?(RQ3) How to evaluate the model? RQ1 theoretically investigates the concepts of privacy and the ontological state-of-the-art representation of personal information. The Data Privacy Vocabulary (DPV) is the taxonomic resource taken as an authoritative reference for the definition of the knowledge domain. Concerning RQ2, we investigate two approaches to classify sensitive data: the first - bottom-up - explores automatic learning methods based on transformer networks, the second - top-down - proposes logical-symbolic methods with the construction of privaframe, a knowledge graph of compositional frames representing personal data categories. Both approaches are tested. For the evaluation - RQ3 – we create SPeDaC, a sentence-level labeled resource. This can be used as a benchmark or training in the SID task, filling the gap of a shared resource in this field. If the approach based on artificial neural networks confirms the validity of the direction adopted in the most recent studies on SID, the logical-symbolic approach emerges as the preferred way for the classification of fine-grained personal data categories, thanks to the semantic-grounded tailor modeling it allows. At the same time, the results highlight the strong potential of hybrid architectures in solving automatic tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correctness of information gathered in production environments is an essential part of quality assurance processes in many industries, this task is often performed by human resources who visually take annotations in various steps of the production flow. Depending on the performed task the correlation between where exactly the information is gathered and what it represents is more than often lost in the process. The lack of labeled data places a great boundary on the application of deep neural networks aimed at object detection tasks, moreover supervised training of deep models requires a great amount of data to be available. Reaching an adequate large collection of labeled images through classic techniques of data annotations is an exhausting and costly task to perform, not always suitable for every scenario. A possible solution is to generate synthetic data that replicates the real one and use it to fine-tune a deep neural network trained on one or more source domains to a different target domain. The purpose of this thesis is to show a real case scenario where the provided data were both in great scarcity and missing the required annotations. Sequentially a possible approach is presented where synthetic data has been generated to address those issues while standing as a training base of deep neural networks for object detection, capable of working on images taken in production-like environments. Lastly, it compares performance on different types of synthetic data and convolutional neural networks used as backbones for the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential gene expression analysis by suppression subtractive hybridization with correlation to the metabolic pathways involved in chronic myeloid leukemia (CML) may provide a new insight into the pathogenesis of CML. Among the overexpressed genes found in CML at diagnosis are SEPT5, RUNX1, MIER1, KPNA6 and FLT3, while PAN3, TOB1 and ITCH were decreased when compared to healthy volunteers. Some genes were identified and involved in CML for the first time, including TOB1, which showed a low expression in patients with CML during tyrosine kinase inhibitor treatment with no complete cytogenetic response. In agreement, reduced expression of TOB1 was also observed in resistant patients with CML compared to responsive patients. This might be related to the deregulation of apoptosis and the signaling pathway leading to resistance. Most of the identified genes were related to the regulation of nuclear factor κB (NF-κB), AKT, interferon and interleukin-4 (IL-4) in healthy cells. The results of this study combined with literature data show specific gene pathways that might be explored as markers to assess the evolution and prognosis of CML as well as identify new therapeutic targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

15

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This clinical study has investigated the antigenic activity of bacterial contents from exudates of acute apical abscesses (AAAs) and their paired root canal contents regarding the stimulation capacity by levels of interleukin (IL)-1 beta and tumor necrosis factor alpha (TNF-α) throughout the root canal treatment against macrophage cells. Paired samples of infected root canals and exudates of AAAs were collected from 10 subjects. Endodontic contents were sampled before (root canal sample [RCS] 1) and after chemomechanical preparation (RCS2) and after 30 days of intracanal medication with calcium hydroxide + chlorhexidine gel (Ca[OH]2 + CHX gel) (RCS3). Polymerase chain reaction (16S rDNA) was used for detection of the target bacteria, whereas limulus amebocyte lysate was used to measure endotoxin levels. Raw 264.7 macrophages were stimulated with AAA exudates from endodontic contents sampled in different moments of root canal treatment. Enzyme-linked immunosorbent assays were used to measure the levels of TNF-α and IL-1 beta. Parvimonas micra, Porphyromonas endodontalis, Dialister pneumosintes, and Prevotella nigrescens were the most frequently detected species. Higher levels of endotoxins were found in samples from periapical exudates at RCS1 (P < .005). In fact, samples collected from periapical exudates showed a higher stimulation capacity at RCS1 (P < .05). A positive correlation was found between endotoxins from exudates with IL-1 beta (r = 0.97) and TNF-α (r = 0.88) production (P < .01). The significant reduction of endotoxins and bacterial species achieved by chemomechanical procedures (RCS2) resulted in a lower capacity of root canal contents to stimulate the cells compared with that at RCS1 (P < .05). The use of Ca(OH)2 + CHX gel as an intracanal medication (RCS3) improved the removal of endotoxins and bacteria from infected root canals (P < .05) whose contents induced a lower stimulation capacity against macrophages cells at RCS1, RCS2, and RCS3 (P < .05). AAA exudates showed higher levels of endotoxins and showed a greater capacity of macrophage stimulation than the paired root canal samples. Moreover, the use of intracanal medication improved the removal of bacteria and endotoxins from infected root canals, which may have resulted in the reduction of the inflammatory potential of the root canal content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistant hypertension (RHTN) includes patients with controlled blood pressure (BP) (CRHTN) and uncontrolled BP (UCRHTN). In fact, RHTN patients are more likely to have target organ damage (TOD), and resistin, leptin and adiponectin may affect BP control in these subjects. We assessed the relationship between adipokines levels and arterial stiffness, left ventricular hypertrophy (LVH) and microalbuminuria (MA). This cross-sectional study included CRHTN (n=51) and UCRHTN (n=38) patients for evaluating body mass index, ambulatory blood pressure monitoring, plasma adiponectin, leptin and resistin concentrations, pulse wave velocity (PWV), MA and echocardiography. Leptin and resistin levels were higher in UCRHTN, whereas adiponectin levels were lower in this same subgroup. Similarly, arterial stiffness, LVH and MA were higher in UCRHTN subgroup. Adiponectin levels negatively correlated with PWV (r=-0.42, P<0.01), and MA (r=-0.48, P<0.01) only in UCRHTN. Leptin was positively correlated with PWV (r=0.37, P=0.02) in UCRHTN subgroup, whereas resistin was not correlated with TOD in both subgroups. Adiponectin is associated with arterial stiffness and renal injury in UCRHTN patients, whereas leptin is associated with arterial stiffness in the same subgroup. Taken together, our results showed that those adipokines may contribute to vascular and renal damage in UCRHTN patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess binocular detection grating acuity using the LEA GRATINGS test to establish age-related norms in healthy infants during their first 3 months of life. In this prospective, longitudinal study of healthy infants with clear red reflex at birth, responses to gratings were measured at 1, 2, and 3 months of age using LEA gratings at a distance of 28 cm. The results were recorded as detection grating acuity values, which were arranged in frequency tables and converted to a one-octave scale for statistical analysis. For the repeated measurements, analysis of variance (ANOVA) was used to compare the detection grating acuity results between ages. A total of 133 infants were included. The binocular responses to gratings showed development toward higher mean values and spatial frequencies, ranging from 0.55 ± 0.70 cycles per degree (cpd), or 1.74 ± 0.21 logMAR, in month 1 to 3.11 ± 0.54 cpd, or 0.98 ± 0.16 logMAR, in month 3. Repeated ANOVA indicated differences among grating acuity values in the three age groups. The LEA GRATINGS test allowed assessment of detection grating acuity and its development in a cohort of healthy infants during their first 3 months of life.