903 resultados para attosecond pulses
Resumo:
During the last decade, microfabrication of photonic devices by means of intense femtosecond (fs) laser pulses has emerged as a novel technology. A common requirement for the production of these devices is that the refractive index modification pitch size should be smaller than the inscribing wavelength. This can be achieved by making use of the nonlinear propagation of intense fs laser pulses. Nonlinear propagation of intense fs laser pulses is an extremely complicated phenomenon featuring complex multiscale spatiotemporal dynamics of the laser pulses. We have utilized a principal approach based on finite difference time domain (FDTD) modeling of the full set of Maxwell's equations coupled to the conventional Drude model for generated plasma. Nonlinear effects are included, such as self-phase modulation and multiphoton absorption. Such an approach resolves most problems related to the inscription of subwavelength structures, when the paraxial approximation is not applicable to correctly describe the creation of and scattering on the structures. In a representative simulation of the inscription process, the signature of degenerate four wave mixing has been found. © 2012 Optical Society of America.
Resumo:
Spectrally modulated Airy-based pulses peak amplitude modulation (PAM) in linear dispersive media is investigated, designed, and numerically simulated. As it is shown here, it is possible to design the spectral modulation of the initial Airy-based pulses to obtain a pre-defined PAM profile as the pulse propagates. Although optical pulses self-amplitude modulation is a well-known effect under non-linear propagation, the designed Airy-based pulses exhibit PAM under linear dispersive propagation. This extraordinary linear propagation property can be applied in many kinds of dispersive media, enabling its use in a broad range of experiments and applications. © 2013 Optical Society of America.
Resumo:
A time dependent electromagnetic pulse generated by a current running laterally to the direction of the pulse propagation is considered in paraxial approximation. It is shown that the pulse envelope moves in the time-spatial coordinates on the surface of a parabolic cylinder for the Airy pulse and a hyperbolic cylinder for the Gaussian. These pulses propagate in time with deceleration along the dominant propagation direction and drift uniformly in the lateral direction. The Airy pulse stops at infinity while the asymptotic velocity of the Gaussian is nonzero. © 2013 Optical Society of America.
Resumo:
A novel kind of Airy-based pulse with an invariant propagation in lossy dispersive media is proposed. The basic principle is based on an optical energy trade-off between different parts of the pulse caused by the chromatic dispersion, which is used to compensate the attenuation losses of the propagation medium. Although the ideal concept of the proposed pulses implies infinite pulse energy, the numerical simulations show that practical finite energy pulses can be designed to obtain a partially invariant propagation over a finite distance of propagation.
Resumo:
We present a perturbation analysis that describes the effect of third-order dispersion on the similariton pulse solution of the nonlinear Schrödinger equation in a fibre gain medium. The theoretical model predicts with sufficient accuracy the pulse structural changes induced, which are observed through direct numerical simulations.
Resumo:
We perform numerical simulations on a model describing a Brillouin-based temperature and strain sensor, testing its response when it is probed with relatively short pulses. Experimental results were recently published [e.g., Opt. Lett. 24, 510 (1999)] that showed a broadening of the Brillouin loss curve when the probe pulse duration is reduced, followed by a sudden and rather surprising reduction of the linewidth when the pulse duration gets shorter than the acoustic relaxation time. Our study reveals the processes responsible for this behavior. We give a clear physical insight into the problem, allowing us to define the best experimental conditions required for one to take the advantage of this effect.
Resumo:
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Resumo:
The radiation in the form of Airy and Gaussian optical pulses is investigated. It is shown that the pulse envelope moves decelerating in the time-spatial coordinates on the surface of a parabolic cylinder for the Airy pulse and a hyperbolic cylinder for the Gaussian. © 2013 IEEE.
Resumo:
We have observed unusual asymmetrical refractive index change as a result of femtosecond laser inscription in a crystal without center of inversion. Profile of the refractive index change exhibits sign turn within the domain of femtosecond pulse exposure. © Owned by the authors, published by EDP Sciences, 2013.
Resumo:
The concept of distributed Kerr-lens mode-locking and a thin-disk Yb:YAG oscillator based on this concept are presented. The described oscillator directly generates pulses with a duration of 49 fs and spectral width of 33 nm
Resumo:
Pulses with an envelope in the form of the Airy function are obtained using Green's functions in 1D and 2D in time domain. Interaction of such pulses with a dielectric layer is investigated and expressions for reflected and transmitted pulses are obtained. © 2012 EUROPEAN MICROWAVE ASSOC.
Resumo:
A tunable bottle microresonator can trap an optical pulse of the given spectral width, hold it as long as the material losses permit, and release without distortion.
Resumo:
Pulses in the form of the Airy function as solutions to an equation similar to the Schrodinger equation but with opposite roles of the time and space variables are derived. The pulses are generated by an Airy time varying field at a source point and propagate in vacuum preserving their shape and magnitude. The pulse motion is decelerating according to a quadratic law. Its velocity changes from infinity at the source point to zero in infinity. These one dimensional results are extended to the 3D+time case for a similar Airy-Bessel pulse with the same behaviour, the non-diffractive preservation and the deceleration. This pulse is excited by the field at a plane aperture perpendicular to the direction of the pulse propagation. © 2011 IEEE.
Resumo:
It is shown that an electromagnetic wave equation in time domain is reduced in paraxial approximation to an equation similar to the Schrodinger equation but in which the time and space variables play opposite roles. This equation has solutions in form of time-varying pulses with the Airy function as an envelope. The pulses are generated by a source point with an Airy time varying field and propagate in vacuum preserving their shape and magnitude. The motion is according to a quadratic law with the velocity changing from infinity at the source point to zero in infinity. These one-dimensional results are extended to the 3D+time case when a similar Airy-Bessel pulse is excited by the field at a plane aperture. The same behaviour of the pulses, the non-diffractive preservation and their deceleration, is found. © 2011 IEEE.