963 resultados para alpha 1 adrenergic receptor stimulating agent


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chikungunya virus (CHIKV) is the causative agent of an outbreak that began in La Réunion in 2005 and remains a major public health concern in India, Southeast Asia, and southern Europe. CHIKV is transmitted to humans by mosquitoes and the associated disease is characterized by fever, myalgia, arthralgia, and rash. As viral load in infected patients declines before the appearance of neutralizing antibodies, we studied the role of type I interferon (IFN) in CHIKV pathogenesis. Based on human studies and mouse experimentation, we show that CHIKV does not directly stimulate type I IFN production in immune cells. Instead, infected nonhematopoietic cells sense viral RNA in a Cardif-dependent manner and participate in the control of infection through their production of type I IFNs. Although the Cardif signaling pathway contributes to the immune response, we also find evidence for a MyD88-dependent sensor that is critical for preventing viral dissemination. Moreover, we demonstrate that IFN-alpha/beta receptor (IFNAR) expression is required in the periphery but not on immune cells, as IFNAR(-/-)-->WT bone marrow chimeras are capable of clearing the infection, whereas WT-->IFNAR(-/-) chimeras succumb. This study defines an essential role for type I IFN, produced via cooperation between multiple host sensors and acting directly on nonhematopoietic cells, in the control of CHIKV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pathogenesis of hepatosplenic T-cell lymphoma (HSTL), a rare entity mostly derived from γδ T cells and usually with a fatal outcome, remains largely unknown. In this study, HSTL samples (7γδ and 2αβ) and the DERL2 HSTL cell line were subjected to combined gene-expression profiling and array-based comparative genomic hybridization. Compared with other T-cell lymphomas, HSTL had a distinct molecular signature irrespective of TCR cell lineage. Compared with peripheral T-cell lymphoma, not otherwise specified and normal γδ T cells, HSTL overexpressed genes encoding NK-cell-associated molecules, oncogenes (FOS and VAV3), the sphingosine-1-phosphatase receptor 5 involved in cell trafficking, and the tyrosine kinase SYK, whereas the tumor-suppressor gene AIM1 (absent in melanoma 1) was among the most down-expressed. We found highly methylated CpG islands of AIM1 in DERL2 cells, and decitabine treatment induced a significant increase in AIM1 transcripts. Syk was present in HSTL cells and DERL2 cells contained phosphorylated Syk and were sensitive to a Syk inhibitor in vitro. Genomic profiles confirmed recurrent isochromosome 7q (n = 6/9) without alterations at the SYK and AIM1 loci. Our results identify a distinct molecular signature for HSTL and highlight oncogenic pathways that offer rationale for exploring new therapeutic options such as Syk inhibitors and demethylating agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aldosterone and vasopressin are responsible for the final adjustment of sodium and water reabsorption in the kidney. In principal cells of the kidney cortical collecting duct (CCD), the integral response to aldosterone and the long-term functional effects of vasopressin depend on transcription. In this study, we analyzed the transcriptome of a highly differentiated mouse clonal CCD principal cell line (mpkCCD(cl4)) and the changes in the transcriptome induced by aldosterone and vasopressin. Serial analysis of gene expression (SAGE) was performed on untreated cells and on cells treated with either aldosterone or vasopressin for 4 h. The transcriptomes in these three experimental conditions were determined by sequencing 169,721 transcript tags from the corresponding SAGE libraries. Limiting the analysis to tags that occurred twice or more in the data set, 14,654 different transcripts were identified, 3,642 of which do not match known mouse sequences. Statistical comparison (at P < 0.05 level) of the three SAGE libraries revealed 34 AITs (aldosterone-induced transcripts), 29 ARTs (aldosterone-repressed transcripts), 48 VITs (vasopressin-induced transcripts) and 11 VRTs (vasopressin-repressed transcripts). A selection of the differentially-expressed, hormone-specific transcripts (5 VITs, 2 AITs and 1 ART) has been validated in the mpkCCD(cl4) cell line either by Northern blot hybridization or reverse transcription-PCR. The hepatocyte nuclear transcription factor HNF-3-alpha (VIT39), the receptor activity modifying protein RAMP3 (VIT48), and the glucocorticoid-induced leucine zipper protein (GILZ) (AIT28) are candidate proteins playing a role in physiological responses of this cell line to vasopressin and aldosterone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of chemoresistance represents a major obstacle in the successful treatment of cancers such as neuroblastoma (NB), a particularly aggressive childhood solid tumour. The mechanisms underlying the chemoresistant phenotype in NB were addressed by gene expression profiling of two doxorubicin (DoxR)-resistant vs sensitive parental cell lines. Not surprisingly, the MDR1 gene was included in the identified upregulated genes, although the highest overexpressed transcript in both cell lines was the frizzled-1 Wnt receptor (FZD1) gene, an essential component of the Wnt/beta-catenin pathway. FZD1 upregulation in resistant variants was shown to mediate sustained activation of the Wnt/beta-catenin pathway as revealed by nuclear beta-catenin translocation and target genes transactivation. Interestingly, specific micro-adapted short hairpin RNA (shRNAmir)-mediated FZD1 silencing induced parallel strong decrease in the expression of MDR1, another beta-catenin target gene, revealing a complex, Wnt/beta-catenin-mediated implication of FZD1 in chemoresistance. The significant restoration of drug sensitivity in FZD1-silenced cells confirmed the FZD1-associated chemoresistance. RNA samples from 21 patient tumours (diagnosis and postchemotherapy), showed a highly significant FZD1 and/or MDR1 overexpression after treatment, underlining a role for FZD1-mediated Wnt/beta-catenin pathway in clinical chemoresistance. Our data represent the first implication of the Wnt/beta-catenin pathway in NB chemoresistance and identify potential new targets to treat aggressive and resistant NB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An attractive treatment of cancer consists in inducing tumor-eradicating CD8(+) CTL specific for tumor-associated Ags, such as NY-ESO-1 (ESO), a strongly immunogenic cancer germ line gene-encoded tumor-associated Ag, widely expressed on diverse tumors. To establish optimal priming of ESO-specific CTL and to define critical vaccine variables and mechanisms, we used HLA-A2/DR1 H-2(-/-) transgenic mice and sequential immunization with immunodominant DR1- and A2-restricted ESO peptides. Immunization of mice first with the DR1-restricted ESO(123-137) peptide and subsequently with mature dendritic cells (DCs) presenting this and the A2-restriced ESO(157-165) epitope generated abundant, circulating, high-avidity primary and memory CD8(+) T cells that efficiently killed A2/ESO(157-165)(+) tumor cells. This prime boost regimen was superior to other vaccine regimes and required strong Th1 cell responses, copresentation of MHC class I and MHC class II peptides by the same DC, and resulted in upregulation of sphingosine 1-phosphate receptor 1, and thus egress of freshly primed CD8(+) T cells from the draining lymph nodes into circulation. This well-defined system allowed detailed mechanistic analysis, which revealed that 1) the Th1 cytokines IFN-gamma and IL-2 played key roles in CTL priming, namely by upregulating on naive CD8(+) T cells the chemokine receptor CCR5; 2) the inflammatory chemokines CCL4 (MIP-1beta) and CCL3 (MIP-1alpha) chemoattracted primed CD4(+) T cells to mature DCs and activated, naive CD8(+) T cells to DC-CD4 conjugates, respectively; and 3) blockade of these chemokines or their common receptor CCR5 ablated priming of CD8(+) T cells and upregulation of sphingosine 1-phosphate receptor 1. These findings provide new opportunities for improving T cell cancer vaccines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Medulloblastoma (MB) is the most common malignant brain tumor in children and is associated with a poor outcome. cMYC amplification characterizes a subgroup of MB with very poor prognosis. However, there exist so far no targeted therapies for the subgroup of MB with cMYC amplification. Here we used kinome-wide RNA interference screening to identify novel kinases that may be targeted to inhibit the proliferation of c-Myc-overexpressing MB. The RNAi screen identified a set of 5 genes that could be targeted to selectively impair the proliferation of c-Myc-overexpressing MB cell lines: AKAP12 (A-kinase anchor protein), CSNK1α1 (casein kinase 1, alpha 1), EPHA7 (EPH receptor A7) and PCTK1 (PCTAIRE protein kinase 1). When using RNAi and a pharmacological inhibitor selective for PCTK1, we could show that this kinase plays a crucial role in the proliferation of MB cell lines and the activation of the mammalian target of rapamycin (mTOR) pathway. In addition, pharmacological PCTK1 inhibition reduced the expression levels of c-Myc. Finally, targeting PCTK1 selectively impaired the tumor growth of c-Myc-overexpressing MB cells in vivo. Together our data uncover a novel and crucial role for PCTK1 in the proliferation and survival of MB characterized by cMYC amplification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac hypertrophy is a complex remodeling process of the heart induced by physiological or pathological stimuli resulting in increased cardiomyocyte size and myocardial mass. Whereas cardiac hypertrophy can be an adaptive mechanism to stressful conditions of the heart, prolonged hypertrophy can lead to heart failure which represents the primary cause of human morbidity and mortality. Among G protein-coupled receptors, the α1-adrenergic receptors (α1-ARs) play an important role in the development of cardiac hypertrophy as demonstrated by numerous studies in the past decades, both in primary cardiomyocyte cultures and genetically modified mice. The results of these studies have provided evidence of a large variety of α1-AR-induced signaling events contributing to the defining molecular and cellular features of cardiac hypertrophy. Recently, novel signaling mechanisms have been identified and new hypotheses have emerged concerning the functional role of the α1-adrenergic receptors in the heart. This review will summarize the main signaling pathways activated by the α1-AR in the heart and their functional implications in cardiac hypertrophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that angiotensin-(1-7) (Ang-(1-7)) infusion potentiates the bradykinin (BK)-induced hypotensive response in conscious rats. The present study was conducted to identify Ang-(1-7)-BK interactions in the isolated rat heart perfused according to the Langendorff technique. Hearts were excised and perfused through the aortic stump under a constant flow with Krebs-Ringer solution and the changes in perfusion pressure and heart contractile force were recorded. Bolus injections of BK (2.5, 5, 10 and 20 ng) produced a dose-dependent hypotensive effect. Ang-(1-7) added to the perfusion solution (2 ng/ml) did not change the perfusion pressure or the contractile force but doubled the hypotensive effect of the lower doses of BK. The BK-potentiating Ang-(1-7) activity was blocked by pretreatment with indomethacin (5 mg/kg, ip) or L-NAME (30 mg/kg, ip). The Ang-(1-7) antagonist A-779 (50 ng/ml in Krebs-Ringer) completely blocked the effect of Ang-(1-7) on BK-induced vasodilation. These data suggest that the potentiation of the BK-induced vasodilation by Ang-(1-7) can be attributed to the release of nitric oxide and vasodilator prostaglandins through an Ang-(1-7) receptor-mediated mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An association between depression and altered immune and hormonal systems has been suggested by the results of many studies. In the present study we carried out immune and hormonal measurements in 40 non-medicated, ambulatory adult patients with depression determined by CID-10 criteria and compared with 34 healthy nondepressed subjects. The severity of the condition was determined with the Hamilton Depression Rating Scale. Of 40 depressed patients, 31 had very severe and 9 severe or moderate depression, 29 (72.5%) were females and 11 (27.5%) were males (2.6:1 ratio). The results revealed a significant reduction of albumin and elevation of alpha-1, alpha-2 and ß-globulins, and soluble IL-2 receptor in patients with depression compared to the values obtained for nondepressed subjects (P<0.05). The decrease lymphocyte proliferation in response to a mitogen was significantly lower in severely or moderately depressed patients when compared to control (P<0.05). These data confirm the immunological disturbance of acute phase proteins and cellular immune response in patients with depression. Other results may be explained by a variety of interacting factors such as number of patients, age, sex, and the nature, severity and/or duration of depression. Thus, the data obtained should be interpreted with caution and the precise clinical relevance of these findings requires further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antibacterial activity of a series of 1,4-naphthoquinones was demonstrated. Disk diffusion tests were carried out against several Gram-positive and Gram-negative bacteria. The compound 5-amino-8-hydroxy-1,4-naphthoquinone was the most effective, presenting inhibition zones measuring 20 mm against staphylococci, streptococci and bacilli at 50 µg/ml. Methicillin-resistant Staphylococcus aureus and several clinical isolates of this bacterium were also inhibited. Naphthazarin, 5-acetamido-8-hydroxy-1,4-naphthoquinone, and 2,3-diamino-1,4-naphthoquinone were the next most active compounds. The minimal inhibitory concentration of the active compounds was determined against S. aureus, ranging from 30 to 125 µg/ml. All compounds presented a minimal bactericidal concentration higher than 500 µg/ml, indicating that their effect was bacteriostatic. The EC50, defined as the drug concentration that produces 50% of maximal effect, was 8 µg/ml for 5-amino-8-hydroxy-1,4-naphthoquinone against S. aureus, S. intermedius, and S. epidermidis. These results indicate an effective in vitro activity of 5-amino-8-hydroxy-1,4-naphthoquinone and encourage further studies for its application in antibiotic therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infarct-induced heart failure is usually associated with cardiac hypertrophy and decreased ß-adrenergic responsiveness. However, conflicting results have been reported concerning the density of L-type calcium current (I Ca(L)), and the mechanisms underlying the decreased ß-adrenergic inotropic response. We determined I Ca(L) density, cytoplasmic calcium ([Ca2+]i) transients, and the effects of ß-adrenergic stimulation (isoproterenol) in a model of postinfarction heart failure in rats. Left ventricular myocytes were obtained by enzymatic digestion 8-10 weeks after infarction. Electrophysiological recordings were obtained using the patch-clamp technique. [Ca2+]i transients were investigated via fura-2 fluorescence. ß-Adrenergic receptor density was determined by [³H]-dihydroalprenolol binding to left ventricle homogenates. Postinfarction myocytes showed a significant 25% reduction in mean I Ca(L) density (5.7 ± 0.28 vs 7.6 ± 0.32 pA/pF) and a 19% reduction in mean peak [Ca2+]i transients (0.13 ± 0.007 vs 0.16 ± 0.009) compared to sham myocytes. The isoproterenol-stimulated increase in I Ca(L) was significantly smaller in postinfarction myocytes (Emax: 63.6 ± 4.3 vs 123.3 ± 0.9% in sham myocytes), but EC50 was not altered. The isoproterenol-stimulated peak amplitude of [Ca2+]i transients was also blunted in postinfarction myocytes. Adenylate cyclase activation through forskolin produced similar I Ca(L) increases in both groups. ß-Adrenergic receptor density was significantly reduced in homogenates from infarcted hearts (Bmax: 93.89 ± 20.22 vs 271.5 ± 31.43 fmol/mg protein in sham myocytes), while Kd values were similar. We conclude that postinfarction myocytes from large infarcts display reduced I Ca(L) density and peak [Ca2+]i transients. The response to ß-adrenergic stimulation was also reduced and was probably related to ß-adrenergic receptor down-regulation and not to changes in adenylate cyclase activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin-(1-7) (Ang-(1-7)) is now considered to be a biologically active member of the renin-angiotensin system. The functions of Ang-(1-7) are often opposite to those attributed to the main effector component of the renin-angiotensin system, Ang II. Chronic administration of angiotensin-converting enzyme inhibitors (ACEI) increases 10- to 25-fold the plasma levels of this peptide, suggesting that part of the beneficial effects of ACEI could be mediated by Ang-(1-7). Ang-(1-7) can be formed from Ang II or directly from Ang I. Other enzymatic pathways for Ang-(1-7) generation have been recently described involving the novel ACE homologue ACE2. This enzyme can form Ang-(1-7) from Ang II or less efficiently by the hydrolysis of Ang I to Ang-(1-9) with subsequent Ang-(1-7) formation. The biological relevance of Ang-(1-7) has been recently reinforced by the identification of its receptor, the G-protein-coupled receptor Mas. Heart and blood vessels are important targets for the formation and actions of Ang-(1-7). In this review we will discuss recent findings concerning the biological role of Ang-(1-7) in the heart and blood vessels, taking into account aspects related to its formation and effects on these tissues. In addition, we will discuss the potential of Ang-(1-7) and its receptor as a target for the development of new cardiovascular drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms underlying the loss of resting bradycardia with detraining were studied in rats. The relative contribution of autonomic and non-autonomic mechanisms was studied in 26 male Wistar rats (180-220 g) randomly assigned to four groups: sedentary (S, N = 6), trained (T, N = 8), detrained for 1 week (D1, N = 6), and detrained for 2 weeks (D2, N = 6). T, D1 and D2 were treadmill trained 5 days/week for 60 min with a gradual increase towards 50% peak VO2. After the last training session, D1 and D2 were detrained for 1 and 2 weeks, respectively. The effect of the autonomic nervous system in causing training-induced resting bradycardia and in restoring heart rate (HR) to pre-exercise training level (PET) with detraining was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. T rats significantly increased peak VO2 by 15 or 23.5% when compared to PET and S rats, respectively. Detraining reduced peak VO2 in both D1 and D2 rats by 22% compared to T rats, indicating loss of aerobic capacity. Resting HR was significantly lower in T and D1 rats than in S rats (313 ± 6.67 and 321 ± 6.01 vs 342 ± 12.2 bpm) and was associated with a significantly decreased intrinsic HR (368 ± 6.1 and 362 ± 7.3 vs 390 ± 8 bpm). Two weeks of detraining reversed the resting HR near PET (335 ± 6.01 bpm) due to an increased intrinsic HR in D2 rats compared with T and D1 rats (376 ± 8.8 bpm). The present study provides the first evidence of intrinsic HR-mediated loss of resting bradycardia with detraining in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The regulatory function of α1B-adrenoceptors in mammalian heart homeostasis is controversial. The objective of the present study was to characterize the expression/activity of key proteins implicated in cardiac calcium handling (Na+/K+-ATPase and Ca2+-ATPases) and growth (ERK1/2, JNK1/2 and p38) in mice with cardiac-selective overexpression of constitutively active mutant α1B-adrenoceptor (CAMα1B-AR), which present a mild cardiac hypertrophy phenotype. Immunoblot assays showed that myocardial plasma membrane Ca2+-ATPase (PMCA) expression was increased by 30% in CAMα1B-AR mice (N = 6, P < 0.05), although there was no change in sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) expression. Moreover, total Ca2+-ATPase activity was not modified, but a significant increase in the activity of the thapsigargin-resistant (PMCA) to thapsigargin-sensitive (SERCA) ratio was detected. Neither Na+/K+-ATPase activity nor the expression of α1 and α2 subunit isoforms was changed in CAMα1B-AR mouse hearts. Moreover, immunoblot assays did not provide evidence for an enhanced activation of the three mitogen-activated protein kinases studied in this stage of hypertrophy. Therefore, these findings indicate that chronic cardiac α1B-AR activation in vivo led to mild hypertrophy devoid of significant signs of adaptive modifications concerning primary intracellular calcium control and growth-related proteins, suggesting a minor pathophysiological role of this adrenergic receptor in mouse heart at this stage of development.