928 resultados para abelian Higgs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ``synthetic dimension'' proposal A. Celi et al., Phys. Rev. Lett. 112, 043001 (2014)] uses atoms with M internal states (''flavors'') in a one-dimensional (1D) optical lattice, to realize a hopping Hamiltonian equivalent to the Hofstadter model (tight-binding model with a given magnetic flux per plaquette) on an M-sites-wide square lattice strip. We investigate the physics of SU(M) symmetric interactions in the synthetic dimension system. We show that this system is equivalent to particles with SU(M) symmetric interactions] experiencing an SU(M) Zeeman field at each lattice site and a non-Abelian SU(M) gauge potential that affects their hopping. This equivalence brings out the possibility of generating nonlocal interactions between particles at different sites of the optical lattice. In addition, the gauge field induces a flavor-orbital coupling, which mitigates the ``baryon breaking'' effect of the Zeeman field. For M particles, concomitantly, the SU(M) singlet baryon which is site localized in the usual 1D optical lattice, is deformed to a nonlocal object (''squished baryon''). We conclusively demonstrate this effect by analytical arguments and exact (numerical) diagonalization studies. Our study promises a rich many-body phase diagram for this system. It also uncovers the possibility of using the synthetic dimension system to laboratory realize condensed-matter models such as the SU(M) random flux model, inconceivable in conventional experimental systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study N = 2 compactifications of heterotic string theory on the CHL orbifold (K3 x T-2)/Z(N) with N = 2, 3, 5, 7. Z(N) acts as an automorphism on K3 together with a shift of 1/N along one of the circles of T-2. These compactifications generalize the example of the heterotic string on K3 x T-2 studied in the context of dualities in string theories. We evaluate the new supersymmetric index for these theories and show that their expansion can be written in terms of the McKay-Thompson series associated with the Z(N) automorphism embedded in the Mathieu group M-24. We then evaluate the difference in one-loop threshold corrections to the non-Abelian gauge couplings with Wilson lines and show that their moduli dependence is captured by Siegel modular forms related to dyon partition functions of N = 4 string theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose the generation of Standard Model fermion hierarchy by the extension of renormalizable SO(10) GUT with O(N (g) ) family gauge symmetry. In this scenario, Higgs representations of SO(10) also carry family indices and are called Yukawons. Vacuum expectation values of these Yukawon fields break GUT and family symmetry and generate MSSM Yukawa couplings dynamically. We have demonstrated this idea using Higgs irrep, ignoring the contribution of 1 2 0-plet which is, however, required for complete fitting of fermion mass-mixing data. The effective MSSM matter fermion couplings to the light Higgs pair are determined by the null eigenvectors of the MSSM-type Higgs doublet superfield mass matrix . A consistency condition on the doublet (1,2,+/- 1]) mass matrix ( 0) is required to keep one pair of Higgs doublets light in the effective MSSM. We show that the Yukawa structure generated by null eigenvectors of are of generic kind required by the MSSM. A hidden sector with a pair of (S (a b) ; I center dot (a b) ) fields breaks supersymmetry and facilitates 0. SUSY breaking is communicated via supergravity. In this scenario, matter fermion Yukawa couplings are reduced from 15 to just 3 parameters in MSGUT with three generations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

If the recent indications of a possible state I broken vertical bar with mass similar to 750 GeV decaying into two photons reported by ATLAS and CMS in LHC collisions at 13 TeV were to become confirmed, the prospects for future collider physics at the LHC and beyond would be affected radically, as we explore in this paper. Even minimal scenarios for the I broken vertical bar resonance and its gamma gamma decays require additional particles with masses . We consider here two benchmark scenarios that exemplify the range of possibilities: one in which I broken vertical bar is a singlet scalar or pseudoscalar boson whose production and gamma gamma decays are due to loops of coloured and charged fermions, and another benchmark scenario in which I broken vertical bar is a superposition of (nearly) degenerate CP-even and CP-odd Higgs bosons in a (possibly supersymmetric) two-Higgs doublet model also with additional fermions to account for the gamma gamma decay rate. We explore the implications of these benchmark scenarios for the production of I broken vertical bar and its new partners at colliders in future runs of the LHC and beyond, at higher-energy pp colliders and at e (+) e (-) and gamma gamma colliders, with emphasis on the bosonic partners expected in the doublet scenario and the fermionic partners expected in both scenarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gravity mediated supersymmetry breaking becomes comparable to gauge mediated supersymmetry breaking contributions when messenger masses are close to the GUT scale. By suitably arranging the gravity contributions, one can modify the soft supersymmetry breaking sector to generate a large stop mixing parameter and a light Higgs mass of 125 GeV. In this kind of hybrid models, however, the nice features of gauge mediation like flavor conservation, etc. are lost. To preserve the nice features, gravitational contributions should become important for lighter messenger masses and should be important only for certain fields. This is possible when the hidden sector contains multiple (at least two) spurions with hierarchical vacuum expectation values. In this case, the gravitational contributions can be organized to be ``just right.'' We present a complete model with two spurion hidden sector where the gravitational contribution is from a warped flavor model in a Randall-Sundrum setting. Along the way, we present simple expressions to handle renormalization group equations when supersymmetry is broken by two different sectors at two different scales.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By the Lie symmetry group, the reduction for divergence-free vector-fields (DFVs) is studied, and the following results are found. A n-dimensional DFV can be locally reduced to a (n - 1)-dimensional DFV if it admits a one-parameter symmetry group that is spatial and divergenceless. More generally, a n-dimensional DFV admitting a r-parameter, spatial, divergenceless Abelian (commutable) symmetry group can be locally reduced to a (n - r)-dimensional DFV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction and LHC phenomenology of the razor variables MR, an event-by-event indicator of the heavy particle mass scale, and R, a dimensionless variable related to the transverse momentum imbalance of events and missing transverse energy, are presented.  The variables are used  in the analysis of the first proton-proton collisions dataset at CMS  (35 pb-1) in a search for superpartners of the quarks and gluons, targeting indirect hints of dark matter candidates in the context of supersymmetric theoretical frameworks. The analysis produced the highest sensitivity results for SUSY to date and extended the LHC reach far beyond the previous Tevatron results.  A generalized inclusive search is subsequently presented for new heavy particle pairs produced in √s = 7 TeV proton-proton collisions at the LHC using 4.7±0.1 fb-1 of integrated luminosity from the second LHC run of 2011.  The selected events are analyzed in the 2D razor-space of MR and R and the analysis is performed in 12 tiers of all-hadronic, single and double leptons final states in the presence and absence of b-quarks, probing the third generation sector using the event heavy-flavor content.   The search is sensitive to generic supersymmetry models with minimal assumptions about the superpartner decay chains. No excess is observed in the number or shape of event yields relative to Standard Model predictions. Exclusion limits are derived in the CMSSM framework with  gluino masses up to 800 GeV and squark masses up to 1.35 TeV excluded at 95% confidence level, depending on the model parameters. The results are also interpreted for a collection of simplified models, in which gluinos are excluded with masses as large as 1.1 TeV, for small neutralino masses, and the first-two generation squarks, stops and sbottoms are excluded for masses up to about 800, 425 and 400 GeV, respectively.

With the discovery of a new boson by the CMS and ATLAS experiments in the γ-γ and 4 lepton final states, the identity of the putative Higgs candidate must be established through the measurements of its properties. The spin and quantum numbers are of particular importance, and we describe a method for measuring the JPC of this particle using the observed signal events in the H to ZZ* to 4 lepton channel developed before the discovery. Adaptations of the razor kinematic variables are introduced for the H to WW* to 2 lepton/2 neutrino channel, improving the resonance mass resolution and increasing the discovery significance. The prospects for incorporating this channel in an examination of the new boson JPC is discussed, with indications that this it could provide complementary information to the H to ZZ* to 4 lepton final state, particularly for measuring CP-violation in these decays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is divided into two parts: interacting dark matter and fluctuations in cosmology. There is an incongruence between the properties that dark matter is expected to possess between the early universe and the late universe. Weakly-interacting dark matter yields the observed dark matter relic density and is consistent with large-scale structure formation; however, there is strong astrophysical evidence in favor of the idea that dark matter has large self-interactions. The first part of this thesis presents two models in which the nature of dark matter fundamentally changes as the universe evolves. In the first model, the dark matter mass and couplings depend on the value of a chameleonic scalar field that changes as the universe expands. In the second model, dark matter is charged under a hidden SU(N) gauge group and eventually undergoes confinement. These models introduce very different mechanisms to explain the separation between the physics relevant for freezeout and for small-scale dynamics.

As the universe continues to evolve, it will asymptote to a de Sitter vacuum phase. Since there is a finite temperature associated with de Sitter space, the universe is typically treated as a thermal system, subject to rare thermal fluctuations, such as Boltzmann brains. The second part of this thesis begins by attempting to escape this unacceptable situation within the context of known physics: vacuum instability induced by the Higgs field. The vacuum decay rate competes with the production rate of Boltzmann brains, and the cosmological measures that have a sufficiently low occurrence of Boltzmann brains are given more credence. Upon further investigation, however, there are certain situations in which de Sitter space settles into a quiescent vacuum with no fluctuations. This reasoning not only provides an escape from the Boltzmann brain problem, but it also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere during slow-roll inflation, suggesting that eternal inflation is much less common than often supposed. Instead, decoherence occurs during reheating, so this analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, we discuss 3d-3d correspondence between Chern-Simons theory and three-dimensional N = 2 superconformal field theory. In the 3d-3d correspondence proposed by Dimofte-Gaiotto-Gukov information of abelian flat connection in Chern-Simons theory was not captured. However, considering M-theory configuration giving the 3d-3d correspondence and also other several developments, the abelian flat connection should be taken into account in 3d-3d correspondence. With help of the homological knot invariants, we construct 3d N = 2 theories on knot complement in 3-sphere for several simple knots. Previous theories obtained by Dimofte-Gaiotto-Gukov can be obtained by Higgsing of the full theories. We also discuss the importance of all flat connections in the 3d-3d correspondence by considering boundary conditions in 3d N = 2 theories and 3-manifold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the measurement of the Higgs Boson decaying into two photons the parametrization of an appropriate background model is essential for fitting the Higgs signal mass peak over a continuous background. This diphoton background modeling is crucial in the statistical process of calculating exclusion limits and the significance of observations in comparison to a background-only hypothesis. It is therefore ideal to obtain knowledge of the physical shape for the background mass distribution as the use of an improper function can lead to biases in the observed limits. Using an Information-Theoretic (I-T) approach for valid inference we apply Akaike Information Criterion (AIC) as a measure of the separation for a fitting model from the data. We then implement a multi-model inference ranking method to build a fit-model that closest represents the Standard Model background in 2013 diphoton data recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). Potential applications and extensions of this model-selection technique are discussed with reference to CMS detector performance measurements as well as in potential physics analyses at future detectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis I present a study of W pair production in e+e- annihilation using fully hadronic W+W- events. Data collected by the L3 detector at LEP in 1996-1998, at collision center-of-mass energies between 161 and 189 GeV, was used in my analysis.

Analysis of the total and differential W+W- cross sections with the resulting sample of 1,932 W+W- → qqqq event candidates allowed me to make precision measurements of a number of properties of the W boson. I combined my measurements with those using other W+W- final states to obtain stringent constraints on the W boson's couplings to fermions, other gauge bosons, and scalar Higgs field by measuring the total e+e- → W+W- cross section and its energy dependence

σ(e+e- → W+W-) =

{2.68+0.98-0.67(stat.)± 0.14(syst.) pb, √s = 161.34 GeV

{12.04+1.38-1.29(stat.)± 0.23(syst.) pb, √s = 172.13 GeV

{16.45 ± 0.67(stat.) ± 0.26(syst.) pb, √s = 182.68 GeV

{16.28 ± 0.38(stat.) ± 0.26(syst.) pb, √s = 188.64 GeV

the fraction of W bosons decaying into hadrons

BR(W →qq') = 68.72 ± 0.69(stat.) ± 0.38(syst.) %,

invisible non-SM width of the W boson

ΓinvisibleW less than MeV at 95% C.L.,

the mass of the W boson

MW = 80.44 ± 0.08(stat.)± 0.06(syst.) GeV,

the total width of the W boson

ΓW = 2.18 ± 0.20(stat.)± 0.11(syst.) GeV,

the anomalous triple gauge boson couplings of the W

ΔgZ1 = 0.16+0.13-0.20(stat.) ± 0.11(syst.)

Δkγ = 0.26+0.24-0.33(stat.) ± 0.16(syst.)

λγ = 0.18+0.13-0.20(stat.) ± 0.11(syst.)

No significant deviations from Standard Model predictions were found in any of the measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we build a novel analysis framework to perform the direct extraction of all possible effective Higgs boson couplings to the neutral electroweak gauge bosons in the H → ZZ(*) → 4l channel also referred to as the golden channel. We use analytic expressions of the full decay differential cross sections for the H → VV' → 4l process, and the dominant irreducible standard model qq ̄ → 4l background where 4l = 2e2μ,4e,4μ. Detector effects are included through an explicit convolution of these analytic expressions with transfer functions that model the detector responses as well as acceptance and efficiency effects. Using the full set of decay observables, we construct an unbinned 8-dimensional detector level likelihood function which is con- tinuous in the effective couplings, and includes systematics. All potential anomalous couplings of HVV' where V = Z,γ are considered, allowing for general CP even/odd admixtures and any possible phases. We measure the CP-odd mixing between the tree-level HZZ coupling and higher order CP-odd couplings to be compatible with zero, and in the range [−0.40, 0.43], and the mixing between HZZ tree-level coupling and higher order CP -even coupling to be in the ranges [−0.66, −0.57] ∪ [−0.15, 1.00]; namely compatible with a standard model Higgs. We discuss the expected precision in determining the various HVV' couplings in future LHC runs. A powerful and at first glance surprising prediction of the analysis is that with 100-400 fb-1, the golden channel will be able to start probing the couplings of the Higgs boson to diphotons in the 4l channel. We discuss the implications and further optimization of the methods for the next LHC runs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.

In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.

A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.

For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases.

Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of "integer" (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases.

Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30 years ago, it can still produce novel phenomena. Of much recent interest is the existence of non-Abelian anyons in FQHE systems. Though it is possible to construct wave functions that realize such particles, whether these wavefunctions are the ground state is a difficult quantitative question that must be answered numerically. In this thesis I describe progress using a density-matrix renormalization group algorithm to study a bilayer system thought to host non-Abelian anyons. We find phase diagrams in terms of experimentally relevant parameters, and also find evidence for a non-Abelian phase known as the "interlayer Pfaffian".