967 resultados para Zero-point Energy
Resumo:
The rise of a new leader of the state of Turkmenistan – President Gurbanguly Berdymukhammedov, who became ruler of the central Asian state after the 21-year rule of Saparmurad Niyazov, the self-proclaimed Turkmenbashi, who died on December 21, 2006 – has initiated changes in Turkmenistan’s political life. The new president has broken with the previous policy of self-isolation, and has directed the country towards openness to the outside world. Opportunities have thereby arisen for competitors in the ‘Great Game’, to gain political influence in Turkmenistan and access to hitherto unexploited Turkmen deposits of gas and oil. A new stage in the Great Game, which has been played for influence in Central Asia and control of access to its energy resources for many years, can thus be said to have been launched, and Turkmenistan has become the main setting for it. The major actors involved are Russia, the United States, China and the European Union.
Resumo:
According to the European Council decision of February 2011, the process of creating the European Union’s internal gas market should be completed by the end of 2014. Therefore, it is worth summarising the changes which have taken place in the gas markets of Central Europe so far. The past few years have seen not only a period of gradual ‘marketisation’ of the national gas sectors, but also the building of new gas infrastructure, a redrawing of the gas flow map, and changes in the ownership of the Central European gas companies. Another change in Central Europe is the fact that individual states and companies are moving away from their traditional focus on their national gas markets; instead, they are beginning to develop a variety of concepts for the regional integration of Central European markets. This publication attempts to grasp the main elements of the ongoing transformation of Central Europe’s gas markets, with particular emphasis on the situation in Poland, the Czech Republic, Slovakia and Hungary.
Resumo:
The ‘turn to the East’ proclaimed by Russia in 2010 has failed to bring about a fundamental breakthrough in her relations with Asian countries, nor has it produced impulses for the economic modernization of Russia’s Far Eastern territories. Although the energisation of Russian policy towards Asia which has taken place under this slogan has diversified Russian foreign policy somewhat, this diversification has two weak points: Firstly, it has occurred only in the political sphere. The share of Asian countries in Russia’s foreign economic relations has not risen significantly in comparison with the share of European and North American countries. Secondly, the ‘turn to the East’ has turned out primarily to be a turn towards China. In all spheres – diplomatic, economic, energy and military – it is Beijing that has become the most important Asian partner for Moscow. The result is that the policy that aimed to limit the excessive – in the Kremlin’s view – dependence of Russia on the West is likely to turn Russia into a ‘junior partner’ of the People’s Republic of China.
Resumo:
Summary. For more than two decades, the development of renewable energy sources (RES) has been an important aim of EU energy policy. It accelerated with the adoption of a 1997 White Paper and the setting a decade later of a 20% renewable energy target, to be reached by 2020. The EU counts on renewable energy for multiple purposes: to diversify its energy supply; to increase its security of supply; and to create new industries, jobs, economic growth and export opportunities, while at the same time reducing greenhouse gas (GHG) emissions. Many expectations rest on its development. Fossil fuels have been critical to the development of industrial nations, including EU Member States, which are now deeply reliant upon coal, oil and gas for nearly every aspect of their existence. Faced with some hard truths, however, the Member States have begun to shelve fossil fuel. These hard truths are as follows: firstly, fossil fuels are a finite resource, sometimes difficult to extract. This means that, at some point, fossil fuels are going to be more difficult to access in Europe or too expensive to use.1 The problem is that you cannot just stop using fossil fuels when they become too expensive; the existing infrastructure is profoundly reliant on fossil fuels. It is thus almost normal that a fierce resistance to change exists. Secondly, fossil fuels contribute to climate change. They emit GHG, which contribute greatly to climate change. As a consequence, their use needs to be drastically reduced. Thirdly, Member States are currently suffering a decline in their own fossil fuel production. This increases their dependence on increasingly costly fossil fuel imports from increasingly unstable countries. This problem is compounded by global developments: the growing share of emerging economies in global energy demand (in particular China and India but also the Middle East) and the development of unconventional oil and gas production in the United States. All these elements endanger the competitiveness of Member States’ economies and their security of supply. Therefore, new indigenous sources of energy and a diversification of energy suppliers and routes to convey energy need to be found. To solve all these challenges, in 2008 the EU put in place a strategy based on three objectives: sustainability (reduction of GHG), competitiveness and security of supply. The adoption of a renewable energy policy was considered essential for reaching these three strategic objectives. The adoption of the 20% renewable energy target has undeniably had a positive effect in the EU on the growth in renewables, with the result that renewable energy sources are steadily increasing their presence in the EU energy mix. They are now, it can be said, an integral part of the EU energy system. However, the necessity of reaching this 20% renewable energy target in 2020, combined with other circumstances, has also engendered in many Member States a certain number of difficulties, creating uncertainties for investors and postponing benefits for consumers. The electricity sector is the clearest example of this downside. Subsidies have become extremely abundant and vary from one Member State to another, compromising both fair competition and single market. Networks encountered many difficulties to develop and adapt. With technological progress these subsidies have also become quite excessive. The growing impact of renewable electricity fluctuations has made some traditional power plants unprofitable and created disincentives for new investments. The EU does clearly need to reassess its strategy. If it repeats the 2008 measures it will risk to provoke increased instability and costs.
Resumo:
European Union energy policy calls for nothing less than a profound transformation of the EU's energy system: by 2050 decarbonised electricity generation with 80-95% fewer greenhouse gas emissions, increased use of renewables, more energy efficiency, a functioning energy market and increased security of supply are to be achieved. Different EU policies (e.g., EU climate and energy package for 2020) are intended to create the political and regulatory framework for this transformation. The sectorial dynamics resulting from these EU policies already affect the systems of electricity generation, transportation and storage in Europe, and the more effective the implementation of new measures the more the structure of Europe's power system will change in the years to come. Recent initiatives such as the 2030 climate/energy package and the Energy Union are supposed to keep this dynamic up. Setting new EU targets, however, is not necessarily the same as meeting them. The impact of EU energy policy is likely to have considerable geo-economic implications for individual member states: with increasing market integration come new competitors; coal and gas power plants face new renewable challengers domestically and abroad; and diversification towards new suppliers will result in new trade routes, entry points and infrastructure. Where these implications are at odds with powerful national interests, any member state may point to Article 194, 2 of the Lisbon Treaty and argue that the EU's energy policy agenda interferes with its given right to determine the conditions for exploiting its energy resources, the choice between different energy sources and the general structure of its energy supply. The implementation of new policy initiatives therefore involves intense negotiations to conciliate contradicting interests, something that traditionally has been far from easy to achieve. In areas where this process runs into difficulties, the transfer of sovereignty to the European level is usually to be found amongst the suggested solutions. Pooling sovereignty on a new level, however, does not automatically result in a consensus, i.e., conciliate contradicting interests. Rather than focussing on the right level of decision making, European policy makers need to face the (inconvenient truth of) geo-economical frictions within the Union that make it difficult to come to an arrangement. The reminder of this text explains these latter, more structural and sector-related challenges for European energy policy in more detail, and develops some concrete steps towards a political and regulatory framework necessary to overcome them.
Resumo:
With the launch last April of an affordable lithium-ion home battery – the Powerwall – Tesla’s CEO Elon Musk is betting that batteries are going to become a mass market. This may very well become reality, but this commentary argues that one should not jump to the conclusion that this is the end of energy utilities. Similar to solar panels, batteries have high upfront costs. The massive deployment of solar was driven by dedicated policy support, in many cases without any kind of cost or volume control. There is no such thing for batteries. In the absence of financing programmes, the author finds that high upfront costs provide an unfavourable starting point for a disruptive development. But he notes that the fact that self-consumption of stored solar energy will soon pay for consumers represents a paradigm shift in the power industry, which should be seen as an opportunity, at least for first-movers.
Resumo:
The Southern Gas Corridor is a system of three complementary gas pipeline projects controlled by Azerbaijan and Turkey, each at a different stage of implementation. The crisis in EU-Russia relations over Ukraine has made the two players interested in the Southern Gas Corridor once again. Brussels views it as an opportunity for a genuine diversification of gas supplies and a way to reinforce its position against Russia. In turn, Moscow’s proposal for Turkey and Greece to join the Turkish Stream gas pipeline project changes the energy map of the regional projects, which indirectly affects the Southern Gas Corridor. This has raised concern in Azerbaijan, which has been making efforts to manoeuvre between the interests of Moscow and Brussels.
Resumo:
Since Vladimir Putin returned to the Kremlin as President in May 2012, the Russian system of power has become increasingly authoritarian, and has evolved towards a model of extremely personalised rule that derives its legitimacy from aggressive decisions in internal and foreign policy, escalates the use of force, and interferes increasingly assertively in the spheres of politics, history, ideology or even public morals. Putin’s power now rests on charismatic legitimacy to a much greater extent than it did during his first two presidential terms; currently the President is presented not only as an effective leader, but also as the sole guarantor of Russia’s stability and integrity. After 15 years of Putin’s rule, Russia’s economic model based on revenue from energy resources has exhausted its potential, and the country has no new model that could ensure continued growth for the economy. The Putinist system of power is starting to show symptoms of agony – it has been unable to generate new development projects, and has been compensating for its ongoing degradation by escalating repression and the use of force. However, this is not equivalent to its imminent collapse.
Resumo:
Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites.
Resumo:
Os edifícios de balanço energético nulo (NZEB - Net-Zero Energy Building) e/ou quase nulo (nZEB), têm vindo a ganhar crescente atenção desde a publicação da diretiva europeia 2010/31/EU [15]. Em Portugal, com a introdução do Decreto-Lei n.º118/2013, dá o primeiro passo para os edifícios com necessidades quase nulas de energia. Os novos edifícios licenciados após 31 dezembro de 2020, ou após 31 de dezembro de 2018 no caso de edifícios públicos, serão edifícios com necessidades quase nulas de energia. O objetivo do trabalho descrito neste artigo consiste na aplicação do conceito ”Net Zero Energy Building”, ao edifício existente do Instituto Superior Politécnico Gaya (ISPGaya), em Vila Nova de Gaia, com o intuito de analisar a viabilidade de otimização de energia e a metodologia deste conceito ao edifício, com recurso a ferramentas de simulação. Neste trabalho efetuámos uma simulação energética do edifício, através do DesignBuilder®, que servirá como termo de comparação para outras simulações. Serão delineadas as especificações a implementar no edifício por forma a ser considerado Net Zero Energy Building, com alterações na simulação do mesmo de acordo com as novas especificações. Por último, será feita a comparação técnica, financeira e ambiental da solução NZEB encontrada. Através das várias simulações energéticas ao edifício, conclui-se que é possível baixar as necessidades energéticas do edifício através de medidas de eficiência energética, em especial na iluminação e que os resultados obtidos, apesar de ser viável a implementação do conceito Net Zero Energy Building, traduzem um esforço financeiro e algumas condicionantes para a sua concretização.
Resumo:
Resonant fluorescence line narrowing of the R1 line of the [Cr(ox)3]3− chromophore in [Rh(bpy)3][NaCr(ox)3]ClO4 at 1.6 K neither gives rise to the usual three-line pattern nor to spectral diffusion. Instead multi-line spectra with spacings equal to the zero-field splitting of the ground state are observed. This phenomenon is attributed to efficient non-radiative resonant energy transfer within the R1 line.
Resumo:
This paper examines the functioning of energy efficiency standards and labeling policies for air conditioners in Japan. The results of our empirical analysis suggest that consumers respond more to label information, which benchmarks the energy efficiency performance of each product to a pre-specified target, than to direct performance measures. This finding provides justification for the setting, and regular updating, of target standards as well as their use in calculating relative performance measures. We also find, through graphical analysis, that air conditioner manufacturers face a tradeoff between energy efficiency and product compactness when they develop their products. This tradeoff, combined with the semi-regular upward revision of minimum energy efficiency standards, has led to the growth in indoor unit size of air conditioners in recent years. In the face of this phenomenon, regulatory rules were revised so that manufacturers could adhere to less stringent standards if the indoor unit size of their product remains below a certain size. Our demand estimates provide no evidence that larger indoor unit size causes disutility to consumers. It is therefore possible that the regulatory change was not warranted from a consumer welfare point of view.
Resumo:
Work performed at the Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Resumo:
"U.S. Atomic Energy Commission Contract AT(29-1)-1106."