939 resultados para Xanthine-oxidase
Resumo:
The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.
Resumo:
Fatty acid degradation in most organisms occurs primarily via the beta-oxidation cycle. In mammals, beta-oxidation occurs in both mitochondria and peroxisomes, whereas plants and most fungi harbor the beta-oxidation cycle only in the peroxisomes. Although several of the enzymes participating in this pathway in both organelles are similar, some distinct physiological roles have been uncovered. Recent advances in the structural elucidation of numerous mammalian and yeast enzymes involved in beta-oxidation have shed light on the basis of the substrate specificity for several of them. Of particular interest is the structural organization and function of the type 1 and 2 multifunctional enzyme (MFE-1 and MFE-2), two enzymes evolutionarily distant yet catalyzing the same overall enzymatic reactions but via opposite stereochemistry. New data on the physiological roles of the various enzymes participating in beta-oxidation have been gathered through the analysis of knockout mutants in plants, yeast and animals, as well as by the use of polyhydroxyalkanoate synthesis from beta-oxidation intermediates as a tool to study carbon flux through the pathway. In plants, both forward and reverse genetics performed on the model plant Arabidopsis thaliana have revealed novel roles for beta-oxidation in the germination process that is independent of the generation of carbohydrates for growth, as well as in embryo and flower development, and the generation of the phytohormone indole-3-acetic acid and the signal molecule jasmonic acid.
Resumo:
The peroxisome targeting signal (PTS) required for import of the rat acyl-CoA oxidase (AOX; EC 1.3.3.6) and the Candida tropicalis multifunctional protein (MFP) in plant peroxisomes was assessed in transgenic Arabidopsis thaliana (L.) Heynh. The native rat AOX accumulated in peroxisomes in A. thaliana cotyledons and targeting was dependent on the presence of the C-terminal tripeptide S-K-L. In contrast, the native C. tropicalis MFP, containing the consensus PTS sequence A-K-I was not targeted to plant peroxisomes. Modification of the carboxy terminus to the S-K-L tripeptide also failed to deliver the MFP to peroxisomes while addition of the last 34 amino acids of the Brassica napus isocitrate lyase, containing the terminal tripeptide S-R-M, enabled import of the fusion protein into peroxisomes. These results underline the influence of the amino acids adjacent to the terminal tripeptide of the C. tropicalis MFP on peroxisomal targeting, even in the context of a protein having a consensus PTS sequence S-K-L.
Resumo:
The endodermis acts as a "second skin" in plant roots by providing the cellular control necessary for the selective entry of water and solutes into the vascular system. To enable such control, Casparian strips span the cell wall of adjacent endodermal cells to form a tight junction that blocks extracellular diffusion across the endodermis. This junction is composed of lignin that is polymerized by oxidative coupling of monolignols through the action of a NADPH oxidase and peroxidases. Casparian strip domain proteins (CASPs) correctly position this biosynthetic machinery by forming a protein scaffold in the plasma membrane at the site where the Casparian strip forms. Here, we show that the dirigent-domain containing protein, enhanced suberin1 (ESB1), is part of this machinery, playing an essential role in the correct formation of Casparian strips. ESB1 is localized to Casparian strips in a CASP-dependent manner, and in the absence of ESB1, disordered and defective Casparian strips are formed. In addition, loss of ESB1 disrupts the localization of the CASP1 protein at the casparian strip domain, suggesting a reciprocal requirement for both ESB1 and CASPs in forming the casparian strip domain.
Resumo:
The ability of the developing myocardium to tolerate oxidative stress during early gestation is an important issue with regard to possible detrimental consequences for the fetus. In the embryonic heart, antioxidant defences are low, whereas glycolytic flux is high. The pro- and antioxidant mechanisms and their dependency on glucose metabolism remain to be explored. Isolated hearts of 4-day-old chick embryos were exposed to normoxia (30 min), anoxia (30 min), and hyperoxic reoxygenation (60 min). The time course of ROS production in the whole heart and in the atria, ventricle, and outflow tract was established using lucigenin-enhanced chemiluminescence. Cardiac rhythm, conduction, and arrhythmias were determined. The activity of superoxide dismutase, catalase, gutathione reductase, and glutathione peroxidase as well as the content of reduced and oxidized glutathione were measured. The relative contribution of the ROS-generating systems was assessed by inhibition of mitochondrial complexes I and III (rotenone and myxothiazol), NADPH oxidases (diphenylene iodonium and apocynine), and nitric oxide synthases (N-monomethyl-l-arginine and N-iminoethyl-l-ornithine). The effects of glycolysis inhibition (iodoacetate), glucose deprivation, glycogen depletion, and lactate accumulation were also investigated. In untreated hearts, ROS production peaked at 10.8 ± 3.3, 9 ± 0.8, and 4.8 ± 0.4 min (means ± SD; n = 4) of reoxygenation in the atria, ventricle, and outflow tract, respectively, and was associated with arrhythmias. Functional recovery was complete after 30-40 min. At reoxygenation, 1) the respiratory chain and NADPH oxidases were the main sources of ROS in the atria and outflow tract, respectively; 2) glucose deprivation decreased, whereas glycogen depletion increased, oxidative stress; 3) lactate worsened oxidant stress via NADPH oxidase activation; 4) glycolysis blockade enhanced ROS production; 5) no nitrosative stress was detectable; and 6) the glutathione redox cycle appeared to be a major antioxidant system. Thus, the glycolytic pathway plays a predominant role in reoxygenation-induced oxidative stress during early cardiogenesis. The relative contribution of mitochondria and extramitochondrial systems to ROS generation varies from one region to another and throughout reoxygenation.
Resumo:
Pseudomonas aeruginosa produces the toxic secondary metabolite hydrogen cyanide (HCN) at high cell population densities and low aeration. Here, we investigated the impact of HCN as a signal in cell-cell communication by comparing the transcriptome of the wild-type strain PAO1 to that of an HCN-negative mutant under cyanogenic conditions. HCN repressed four genes and induced 12 genes. While the individual functions of these genes are unknown, with one exception (i.e. a ferredoxin-dependent reductase), a highly inducible six-gene cluster (PA4129-PA4134) was found to be crucial for protection of P.aeruginosa from external HCN intoxication. A double mutant deleted for PA4129-PA4134 and cioAB (encoding cyanide-insensitive oxidase) did not grow with 100M KCN, whereas the corresponding single mutants were essentially unaffected, suggesting a synergistic action of the PA4129-PA4134 gene products and cyanide-insensitive oxidase.
Resumo:
Type I hyperprolinemia (HPI) is an autosomal recessive disorder associated with cognitive and psychiatric troubles, caused by alterations of the Proline Dehydrogenase gene (PRODH) at 22q11. HPI results from PRODH deletion and/or missense mutations reducing proline oxidase (POX) activity. The goals of this study were first to measure in controls the frequency of PRODH variations described in HPI patients, second to assess the functional effect of PRODH mutations on POX activity, and finally to establish genotype/enzymatic activity correlations in a new series of HPI patients. Eight of 14 variants occurred at polymorphic frequency in 114 controls. POX activity was determined for six novel mutations and two haplotypes. The c.1331G>A, p.G444D allele has a drastic effect, whereas the c.23C>T, p.P8L allele and the c.[56C>A; 172G>A], p.[Q19P; A58T] haplotype result in a moderate decrease in activity. Among the 19 HPI patients, 10 had a predicted residual activity <50%. Eight out of nine subjects with a predicted residual activity > or = 50% bore at least one c.824C>A, p.T275N allele, which has no detrimental effect on activity but whose frequency in controls is only 3%. Our results suggest that PRODH mutations lead to a decreased POX activity or affect other biological parameters causing hyperprolinemia.
Resumo:
GABA receptors are ubiquitous in the cerebral cortex and play a major role in shaping responses of cortical neurons. GABAA and GABAB receptor subunit expression was visualized by immunohistochemistry in human auditory areas from both hemispheres in 9 normal subjects (aged 43-85 years; time between death and fixation 6-24 hours) and in 4 stroke patients (aged 59-87 years; time between death and fixation 7-24 hours) and analyzed qualitatively for GABAA and semiquantitatively for GABAB receptor subunits. In normal brains, the primary auditory area (TC) and the surrounding areas TB and TA displayed distinct GABAA receptor subunit labeling with differences among cortical layers and areas. In postacute and chronic stroke we found a layer-selective downregulation of the alpha-2 subunit in the anatomically intact cerebral cortex of the intact and of the lesioned hemisphere, whereas the alpha-1, alpha-3 and beta-2/3 subunits maintained normal levels of expression. The GABAB receptors had a distinct laminar pattern in auditory areas and minor differences among areas. Unlike in other pathologies, there is no modulation of the GABAB receptor expression in subacute or chronic stroke.
Resumo:
The relationship between schistosomes and their intermediate hosts is an extremely intricate one with strains and species of the parasite depending on particular species of snail, which in turn may vary in their susceptibility to the parasites. In order to gain a better understanding of the epidemiology of the disease we have been investigating the use of molecular markers for snail identification and for studying host-parasite relationships. In this paper we will draw on examples concerning schistosomiasis in West and East Africa to illustrate how a molecular analysis can be used as part of a "total evidence" approach to characterisation of Bulinus species and provide insights into parasite transmission. Particular emphasis is given to ribosomal RNA genes (rRNA), random amplified polymorphic DNA (RAPDs) and the mitochondrial gene cytochrome oxidase I (COI). Snails resistant to infection occur naturally and there is a genetic basis for this resistance. In Biomphalaria glabrata resistance to Schistosoma mansoni is known to be a polygenic trait and we have initiated a preliminary search for snail genomic regions linked to, or involved in, resistance by using a RAPD based approach in conjunction with progeny pooling methods. We are currently characterising a variety of STSs (sequence tagged sites) associated with resistance. These can be used for local linkage and interval mapping to define genomic regions associated with the resistance trait. The development of such markers into simple dot-blot or specific PCR-based assays may have a direct and practical application for the identification of resistant snails in natural populations.
Resumo:
We previously established that exogenous adenosine (ADO) induces transient arrhythmias in the developing heart via the adenosine A1 receptor (A1AR) and downstream activation of NADPH oxidase/ERK and PLC/PKC pathways. Here, we investigated the mechanisms by which accumulation of endogenous ADO and its derived compound inosine (INO) in the interstitial compartment induce rhythm and conduction troubles. The validated model of the spontaneously beating heart obtained from 4-day-old chick embryos was used. Quantitative RT-PCR showed that enzymes involved in ADO and INO metabolism (CD39, CD73 and eADA) as well as equilibrative (ENT1, -3, -4) and concentrative (CNT3) nucleoside transporters were differentially expressed in atria, ventricle and outflow tract. Inactivation of ENTs by dipyridamole, 1) increased myocardial ADO level, 2) provoked atrial arrhythmias and atrio-ventricular blocks (AVB) in 70% of the hearts, 3) prolonged P wave and QT interval without altering contractility, and 4) increased ERK2 phosphorylation. Blockade of CD73-mediated phosphohydrolysis of AMP to ADO, MEK/ERK pathway inhibition or A1AR inhibition prevented these arrhythmias. Exposure to exogenous INO also caused atrial ectopy associated with AVB and ERK2 phosphorylation which were prevented by A1AR or A2AAR antagonists exclusively or by MEK/ERK inhibitor. Inhibition of ADA-mediated conversion of ADO to INO increased myocardial ADO and decreased INO as expected, but slightly augmented heart rate variability without provoking AVB. Thus, during cardiogenesis, disturbances of nucleosides metabolism and transport, can lead to interstitial accumulation of ADO and INO and provoke arrhythmias in an autocrine/paracrine manner through A1AR and A2AAR stimulation and ERK2 activation.
Resumo:
There has been an ardent interest in herbivore saliva due to its roles in inducing plant defenses and its impact on herbivore fitness. Two techniques are described that inhibit the secretion of labial saliva from the caterpillar, Helicoverpa zea, during feeding. The methods rely on cauterizing the caterpillar's spinneret, the principal secretory structure of the labial glands, or surgically removing the labial salivary gland. Both methods successfully inhibit secretion of saliva and the principal salivary enzyme glucose oxidase. Caterpillars with inhibited saliva production feed at similar rates as the untreated caterpillars, pupate, and emerge as adults. Glucose oxidase has been suggested to increase the caterpillar's survival through the suppression of inducible anti-herbivore defenses in plants. Tobacco (Nicotiana tabacum) leaves fed on by caterpillars with ablated salivary glands had significantly higher levels of nicotine, an inducible anti-herbivore defense compound of tobacco, than leaves fed upon by caterpillars with intact labial salivary glands. Tomato (Lycopersicon esculentum) leaves fed upon by caterpillars with suppressed salivary secretions showed greatly reduced evidence of hydrogen peroxide formation compared to leaves fed upon by intact caterpillars. These two methods are useful techniques for determining the role that saliva plays in manipulating plant anti-herbivore defenses.
Resumo:
Angiostrongylus cantonensis, A. costaricensis, and A. vasorum are etiologic agents of human parasitic diseases. Their identification, at present, is only possible by examining the adult worm after a 40-day period following infection of vertebrate hosts with the third-stage larvae. In order to obtain a diagnostic tool to differentiate larvae and adult worm from the three referred species, polymerase chain reaction-restriction fragment length polymorphism was carried out. The rDNA second internal transcribed spacer (ITS2) and mtDNA cytochrome oxidase I regions were amplified, followed by digestion of fragments with the restriction enzymes RsaI, HapII, AluI, HaeIII, DdeI and ClaI. The enzymes RsaI and ClaI exhibited the most discriminating profiles for the differentiation of the regions COI of mtDNA and ITS2 of rDNA respectively. The methodology using such regions proved to be efficient for the specific differentiation of the three species of Angiostrongylus under study.
Resumo:
After more than 40 years of clinical use, levodopa (LD) remains the gold standard of symptomatic efficacy in the drug treatment of Parkinson's disease (PD). Compared with other available dopaminergic therapies, dopamine replacement with LD is associated with the greatest improvement in motor function. Long-term treatment with LD is, however, often complicated by the development of various types of motor response oscillations over the day, as well as drug-induced dyskinesias. Motor fluctuations can be improved by the addition of drugs such as entacapone or monoamine oxidase inhibitors, which extend the half-life of levodopa or dopamine, respectively. However, dyskinesia control still represents a major challenge. As a result, many neurologists have become cautious when prescribing therapy with LD. This review summarizes the available evidence regarding the use of LD to treat PD and will also address the issue of LD delivery as a critical factor for the drug's propensity to induce motor complications.
Resumo:
Autophagy is a key regulator of cellular homeostasis that can be activated by pathogen-associated molecules and recently has been shown to influence IL-1β secretion by macrophages. However, the mechanisms behind this are unclear. Here, we describe a novel role for autophagy in regulating the production of IL-1β in antigen-presenting cells. After treatment of macrophages with Toll-like receptor ligands, pro-IL-1β was specifically sequestered into autophagosomes, whereas further activation of autophagy with rapamycin induced the degradation of pro-IL-1β and blocked secretion of the mature cytokine. Inhibition of autophagy promoted the processing and secretion of IL-1β by antigen-presenting cells in an NLRP3- and TRIF-dependent manner. This effect was reduced by inhibition of reactive oxygen species but was independent of NOX2. Induction of autophagy in mice in vivo with rapamycin reduced serum levels of IL-1β in response to challenge with LPS. These data demonstrate that autophagy controls the production of IL-1β through at least two separate mechanisms: by targeting pro-IL-1β for lysosomal degradation and by regulating activation of the NLRP3 inflammasome.
Resumo:
Membranes of maize (Zea mays L., cv LG 11) roots were fractionated by sucrose (in presence or absence of Mg2+) or dextran density gradient centrifugations and the locations of organelles were determined using marker enzymes. Latent UDPase was used as a Golgi marker, catalase for the peroxysomes, cytochrome c oxidase for the mitochondria, UDP-Gal-galactosyltransferase for the amyloplast membranes and NADH-cytochrome c reductase for the ER. Two markers were selected for the plasmalemma, the vanadate-sensitive ATPase and UDP-Glc-sterolglucosyltransferase. The distributions of the PPase and vacuolar ATPase were found to be similar after density gradient centrifugation. The PPase and vacuolar ATPase activities were clearly separated from almost all the other markers tested, however, a partial association of both activities with the ER cannot be completely ruled out. The PPase of maize roots is more active and easier to measure than the vacuolar ATPase and is therefore an excellent candidate for use as a tonoplast marker.