914 resultados para White-matter Damage
Resumo:
The stable carbon isotopic composition of the planktonic foraminifera Globigerinoides sacculifer and G. ruber (white) and sedimentary organic matter from the northern Gulf of Aqaba have been investigated to estimate changes in delta13CDIC in surface waters during the last 1,000 years. The high sedimentation rates at the core sites (about 54 cm/Kyear) provide high temporal resolution (~10 years). Recent sediments at the top of the cores reflect conditions younger than 1950. The delta13C records of the planktonic foraminifera from three multicores display similar trends, showing a uniform and consistent pattern before the 1750s, and a gradual decrease of approximately 0.63? over the last two centuries. This decrease seems to track the decrease of delta13CDIC in surface waters, which is mainly caused by the increase of anthropogenic input of 13C-depleted CO2 into the atmosphere. Similarly, a trend towards lighter values of the carbon isotopic composition of sedimentary organic matter (delta13Corg) during the last 200 years supports the interpretation obtained from the planktonic foraminiferal delta13C. Furthermore, direct measurements of seawater show that delta13C of the dissolved inorganic carbon (DIC) in the northern Gulf of Aqaba has decreased by about 0.44 per mil during the period 1979-2000. The average annual decrease is 0.021 per mil, which is similar to that observed globally. The delta13C values of planktonic foraminifera combined with organic matter delta13C from marine sediments are good indicators for reconstructing past changes in atmospheric CO2 concentrations from the northern Gulf of Aqaba.
(Table 4) Concentration of suspended matter in waters of the River Kem' estuary on 25-28 August 2002
Resumo:
Distribution patterns of water temperature, salinity, current velocities, suspended matter concentration, bottom contour, and zooplankton abundance were studied in relation to marine-riverine interactions and tide/ebb phases for coast lines of different configurations in the White Sea during cruises of R/V Ekolog (August of 2006 and 2007). Significant difference in manifestation of combined effect of marine and riverine impacts (estuarine concave relief) and only marine impact (open-sea straight line portion) was observed. This results in both variations in sea water level and distribut patterns of suspended matter and zooplankton.
Resumo:
With a view to more complete understanding of the role of phyto- and zooplankton in biogeochemical cycles, spatial distributions of Fe, Mn, Co, Ni, Cr, Cu, Cd, Pb, Zn, As, Hg, and Corg in the White Sea seston (21 samples) collected in August 2004 during Cruise 64 of R/V ''Professor Shtokman'' were studied. It was shown that the elements in study are accumulated in plankton with enrichment factors from 10**2 for Hg to 10**5 for Fe, as compared to seawater. Spatial distribution of trace elements is determined by sources of their supply and correlates with distribution of primary production and biomass of zooplankton. Increased values of trace element contents (excluding As) are characteristic of the Dvina Bay, whereas the highest As concentrations were found in the Kandalaksha Bay.
Resumo:
The distribution of temperature and salinity, current velocities, suspended particulate matter, bottom sediments, bottom morphology, and planktonic and benthic organisms during the summer period are studied in the estuary of the large Onega River and coastal areas of the Onega Bay (White Sea) influenced by interacting marine and riverine factors.
Resumo:
Analysis of contribution of micronodules of sand and silt size to chemical composition of various types of pelagic sediments, as well as use of published data indicate that in some types of bottom sediments micronodules are the principal carriers of manganese and nickel. These elements appear to constitute smaller fractions of colloidal iron and manganese hydroxides, as well as terrigenous material.