989 resultados para Water harvesting
Resumo:
The work studies the extent of asymmetric flow in water models of continuous casting molds of two different configurations. In the molds where fluid is discharged through multiple holes at the bottom, the flow pattern in the lower portion depends on the size of the lower two recirculating domains. If they reach the mold bottom, the flow pattern in the lower portion is symmetrical about the central plane; otherwise, it is asymmetrical. On the other hand, in the molds where the fluid is discharged through the entire mold cross section, the flow pattern is always asymmetrical if the aspect ratio is 1:6.25 or more. The fluid jet swirls while emerging through the nozzle. The interaction of the swirling Jets with the wide sidewalls of the mold gives rise to asymmetrical flow inside the mold. In the molds with lower aspect ratios, where the jets do not touch the wide side walls, the flow pattern is symmetrical about the central plane.
Resumo:
Here we find through computer simulations and theoretical analysis that the low temperature thermodynamic anomalies of liquid water arises from the intermittent fluctuation between its high density and low density forms, consisting largely of 5-coordinated and 4-coordinated water molecules, respectively. The fluctuations exhibit strong dynamic heterogeneity (defined by the four point time correlation function), accompanied by a divergence like growth of the dynamic correlation length, of the type encountered in fragile supercooled liquids. The intermittency has been explained by invoking a two state model often employed to understand stochastic resonance, with the relevant periodic perturbation provided here by the fluctuation of the total volume of the system.
Resumo:
This paper presents the results of laboratory investigation carried out on Ahmedabad sand on the liquefaction and pore water pressure generation during strain controled cyclic loading. Laboratory experiments were carried out on representative natural sand samples (base sand) collected from earthquake-affected area of Ahmedabad City of Gujarat State in India. A series of strain controled cyclic triaxial tests were carried out on isotropically compressed samples to study the influence of different parameters such as shear strain amplitude, initial effective confining pressure, relative density and percentage of non-plastic fines on the behavior of liquefaction and pore water pressure generation. It has been observed from the laboratory investigation that the potential for liquefaction of the sandy soils depends on the shear strain amplitude, initial relative density, initial effective confining pressure and non-plastic fines. In addition, an empirical relationship between pore pressure ratio and cycle ratio independent of the number of cycles of loading, relative density, confining pressure, amplitude of shear strain and non-plastic fines has been proposed.
Resumo:
Due to its remarkable mechanical and biological properties, there is considerable interest in understanding, and replicating, spider silk's stress-processing mechanisms and structure-function relationships. Here, we investigate the role of water in the nanoscale mechanics of the different regions in the spider silk fibre, and their relative contributions to stress processing. We propose that the inner core region, rich in spidroin II, retains water due to its inherent disorder, thereby providing a mechanism to dissipate energy as it breaks a sacrificial amide-water bond and gains order under strain, forming a stronger amide-amide bond. The spidroin I-rich outer core is more ordered under ambient conditions and is inherently stiffer and stronger, yet does not on its own provide high toughness. The markedly different interactions of the two proteins with water, and their distribution across the fibre, produce a stiffness differential and provide a balance between stiffness, strength and toughness under ambient conditions. Under wet conditions, this balance is destroyed as the stiff outer core material reverts to the behaviour of the inner core.
Resumo:
Improving access to safe drinking water can result in multi-dimensional impacts on people's livelihood. This has been aptly reflected in the Millennium Development Goals (MDG) as one of the major objectives. Despite the availability of diverse and complex set of technologies for water purification, pragmatic and cost-effective use of the same is impeding the use of available sources of water. Hence, in country like India simple low-energy technologies such as solar still are likely to succeed. Solar stills would suffice the basic minimum drinking water requirements of man. Solar stills use sunlight, to kill or inactivate many, if not all, of the pathogens found in water. This paper provides an integrated assessment of the suitability of domestic solar still as a viable safe water technology for India. Also an attempt has been made to critically assess the operational feasibility and costs incurred for using this technology in rural India.
Resumo:
A fuzzy waste-load allocation model, FWLAM, is developed for water quality management of a river system using fuzzy multiple-objective optimization. An important feature of this model is its capability to incorporate the aspirations and conflicting objectives of the pollution control agency and dischargers. The vagueness associated with specifying the water quality criteria and fraction removal levels is modeled in a fuzzy framework. The goals related to the pollution control agency and dischargers are expressed as fuzzy sets. The membership functions of these fuzzy sets are considered to represent the variation of satisfaction levels of the pollution control agency and dischargers in attaining their respective goals. Two formulations—namely, the MAX-MIN and MAX-BIAS formulations—are proposed for FWLAM. The MAX-MIN formulation maximizes the minimum satisfaction level in the system. The MAX-BIAS formulation maximizes a bias measure, giving a solution that favors the dischargers. Maximization of the bias measure attempts to keep the satisfaction levels of the dischargers away from the minimum satisfaction level and that of the pollution control agency close to the minimum satisfaction level. Most of the conventional water quality management models use waste treatment cost curves that are uncertain and nonlinear. Unlike such models, FWLAM avoids the use of cost curves. Further, the model provides the flexibility for the pollution control agency and dischargers to specify their aspirations independently.
Resumo:
Recent research in modelling uncertainty in water resource systems has highlighted the use of fuzzy logic-based approaches. A number of research contributions exist in the literature that deal with uncertainty in water resource systems including fuzziness, subjectivity, imprecision and lack of adequate data. This chapter presents a broad overview of the fuzzy logic-based approaches adopted in addressing uncertainty in water resource systems modelling. Applications of fuzzy rule-based systems and fuzzy optimisation are then discussed. Perspectives on the scope for further research are presented.
Resumo:
The Coal Seam Gas (CSG) industry in Australia has grown significantly in recent years. During the gas extraction process, water is also recovered which is brackish in character. In order to facilitate beneficial reuse of the water, the CSG industry has primarily invested in Reverse Osmosis (RO) as the primary method for associated water desalination. However, the presence of alkaline earth ions in the water combined with the inherent alkalinity of the water may result in RO membrane scaling. Consequently, weak acid cation (WAC) synthetic ion exchange resins were investigated as a potential solution to this potential problem. It was shown that resins were indeed highly efficient at treating single and multi-component solutions of alkaline earth ions. The interaction of the ions with the resin was found to be considerably more complex that previously reported.
Resumo:
A new water-soluble, salen [salen = bis(salicylidene) ethylenediamine]-based ligand, 3 was developed. Two of the metal complexes of this ligand, i.e., 3a, [Mn(III)] and 3b, [Ni(II)], in the presence of cooxidant magnesium monoperoxyphthalate (MMPP) cleaved plasmid DNA pTZ19R efficiently and rapidly at a concentration similar to 1 mu M. In contrast, under comparable conditions, other metal complexes 3c, [Cu(II)] or 3d, [Cr(III)] could not induce any significant DNA nicking. The findings with Ni(II) complex suggest that the DNA cleavage processes can be modulated by the disposition of charges around the ligand.
Resumo:
Interfacing carbon nanodots (C-dots) with graphitic carbon nitride (g-C3N4) produces a metal-free system that has recently demonstrated significant enhancement of photo-catalytic performance for water splitting into hydrogen [Science, 2015, 347, 970–974]. However, the underlying photo-catalytic mechanism is not fully established. Herein, we have carried out density functional theory (DFT) calculations to study the interactions between g-C3N4 and trigonal/hexagonal shaped C-dots. We find that hybrid C-dots/g-C3N4 can form a type-II van der Waals heterojunction, leading to significant reduction of band gap. The C-dot decorated g-C3N4 enhances the separation of photogenerated electron and hole pairs and the composite's visible light response. Interestingly, the band alignment of C-dots and g-C3N4 calculated by the hybrid functional method indicates that C-dots act as a spectral sensitizer in hybrid C-dots/g-C3N4 for water splitting. Our results offer new theoretical insights into this metal-free photocatalyst for water splitting.
Resumo:
Permalloy (NiFeMo) nanoparticles were fabricated by laser ablation of bulk material in water with a UV pulsed laser. Transmission electron microscope images showed that approximately spherical particles about 50 nm in diameter were formed in the ablation process. All diffraction peaks corresponding to the bulk material were present in the nanoparticles. In addition to these peaks several new peaks were observed in the nanoparticles, which were attributed to nickel oxide.
Resumo:
At low temperature (below its freezing/melting temperature), liquid water under confinement is known to exhibit anomalous dynamical features. Here we study structure and dynamics of water in the grooves of a long DNA duplex using molecular dynamics simulations with TIP5P potential at low temperature. We find signatures of a dynamical transition in both translational and orientational dynamics of water molecules in both the major and the minor grooves of a DNA duplex. The transition occurs at a slightly higher temperature (TGL ≈ 255 K) than the temperature at which the bulk water is found to undergo a dynamical transition, which for the TIP5P potential is at 247 K. Groove water, however, exhibits markedly different temperature dependence of its properties from the bulk. Entropy calculations reveal that the minor groove water is ordered even at room temperature, and the transition at T ≈ 255 K can be characterized as a strong-to-strong dynamical transition. Confinement of water in the grooves of DNA favors the formation of a low density four-coordinated state (as a consequence of enthalpy−entropy balance) that makes the liquid−liquid transition stronger. The low temperature water is characterized by pronounced tetrahedral order, as manifested in the sharp rise near 109° in the O−O−O angle distribution. We find that the Adams−Gibbs relation between configurational entropy and translational diffusion holds quite well when the two quantities are plotted together in a master plot for different region of aqueous DNA duplex (bulk, major, and minor grooves) at different temperatures. The activation energy for the transfer of water molecules between different regions of DNA is found to be weakly dependent on temperature.
Resumo:
A microcontroller based, thermal energy meter cum controller (TEMC) suitable for solar thermal systems has been developed. It monitors solar radiation, ambient temperature, fluid flow rate, and temperature of fluid at various locations of the system and computes the energy transfer rate. It also controls the operation of the fluid-circulating pump depending on the temperature difference across the solar collector field. The accuracy of energy measurement is +/-1.5%. The instrument has been tested in a solar water heating system. Its operation became automatic with savings in electrical energy consumption of pump by 30% on cloudy days.
Resumo:
This paper presents a global-optimisation frame-work for the design of a manipulator for harvesting capsicum(peppers) in the field. The framework uses a simulated capsicum scenario with automatically generated robot models based on DH parameters. Each automatically generated robot model is then placed in the simulated capsicum scenario and the ability of the robot model to get to several goals (capsicum with varying orientations and positions) is rated using two criteria:the length of a collision-free path and the dexterity of the end-effector. These criteria form the basis of the objective function used to perform a global optimisation. The paper shows a preliminary analysis and results that demonstrate the potential of this method to choose suitable robot models with varying degrees of freedom.
Resumo:
Developing accurate and reliable crop detection algorithms is an important step for harvesting automation in horticulture. This paper presents a novel approach to visual detection of highly-occluded fruits. We use a conditional random field (CRF) on multi-spectral image data (colour and Near-Infrared Reflectance, NIR) to model two classes: crop and background. To describe these two classes, we explore a range of visual-texture features including local binary pattern, histogram of oriented gradients, and learn auto-encoder features. The pro-posed methods are evaluated using hand-labelled images from a dataset captured on a commercial capsicum farm. Experimental results are presented, and performance is evaluated in terms of the Area Under the Curve (AUC) of the precision-recall curves.Our current results achieve a maximum performance of 0.81AUC when combining all of the texture features in conjunction with colour information.