946 resultados para Waste water drainage
Resumo:
Recent research has proved the potential of alkaline activated fly-ash for soil stabilisation. However, such studies have not focused on the link between financial, mechanical and environmental aspects of this solution, but only on their absolute mechanical properties. The present paper characterises the mechanical behaviour of a large spectrum of activator-ash-soil combinations used to build jet mixing columns, analysing also the cost and CO2 (eq) emissions. The concern with these two vectors forced a decrease in the quantity of stabilising agent added to the soil, relatively to previous research, and the effects of such low quantities have not yet been published. However, the results clearly showed a significant improve in strength, still well above the average values expected when improving the stressstrain behaviour of a weak soil. Uniaxial compressive strength tests were used to assess the effects of the fly-ash percentage, the alkalieash ratio and the water content. The carbon calculator recently developed by the European Federation of Foundation Contractors and the Deep Foundations Institute was used to quantify the CO2 (eq) emissions associated with this technique. The financial cost was estimated based on the experience of a major Portuguese contractor. For comparison purposes, soil cement mixtures were also analysed, using similar conditions and tools used for the soil-ash analysis. Results showed that the cement and ash solutions are very similar in terms of overall performance, with some advantage of the former regarding financial cost, and a significant advantage of the latter regarding the CO2 (eq) emissions. This new grout, although it is in an embryonic stage, it has the potential for broader developments in the field.
Resumo:
Dissertação de mestrado em Geociências (área de especialização em Valorização de Recursos Geológicos)
Resumo:
Research was conducted to investigate the potential for ecologically engineering a sustainable wetland ecosystem over pyritic mine tailings to prevent the generation of acid mine drainage. Ecological engineering is technology with the primary goal being the creation of self-sustainable ecological systems. Work involved the design and construction of a pilot-scale wetland system comprising three wetland cells, each covering 100 m2. Approximately forty tonnes of pyritic mine tailings were deposited on the base of the first cell above a synthetic liner, covered with peat, flooded and planted with emergent wetland macrophytes Typha latifolia, Phragmites australis, and Juncus effusus. The second cell was constructed as a conventional free water surface wetland, planted identically, and used as a reference wetland/experimental control. Wetland monitoring to determine long-term sustainability focused on indicators of ecosystem health including ecological, hydrological, physico-chemical, geochemical, and biotic metrics. An integrated assessment was conducted that involved field ecology in addition to ecological risk assessment. The objective of the field ecology study was to use vegetative parameters as ecological indicators for documenting wetlands success or degradation. The goal of the risk assessment was to determine if heavy-metal contamination of the wetland sediments occurred through metal mobilisation from the underlying tailings, and to evaluate if subsequent water column chemistry and biotic metal concentrations were significantly correlated with adverse wetland ecosystem impacts. Data were used to assess heavy metal bioavailability within the system as a function of metal speciation in the wetland sediments. Results indicate hydrology is the most important variable in the design and establishment of the tailings wetland and suggest a wetland cover is an ecologically viable alternative for pyritic tailings which are feasible to flood. Ecological data indicate that in terms of species richness and diversity, the tailings-wetland was exhibiting the ecological characteristics of natural wetlands within two years. Ata indicate that pH and conductivity in the tailings-wetland were not adversely impacted by the acid-generating potential or sulphate concentration of the tailings substrate and its porewater. Similarly, no enhanced seasonal impacts from sulphate or metals in the water column, nor adverse impacts on the final water quality of the outflows, were detected. Mean total metal concentrations in the sediments of the tailings-wetland indicate no significant adverse mobilisation of metals into the peat substrate from the tailings. Correlation analyses indicate a general increase in sediment metal concentration in this wetland with increasing water depth and pH, and a corresponding decrease in the metal concentrations of the water column. Sediment extractions also showed enrichment of Cd, Fe, Pb and Zn in the oxidisable fraction (including sulphides and organic matter) of the tailings-wetland sediments. These data suggest that adsorption and coprecipitation of metals is occurring from the water column of the tailings wetland with organic material at increasing depths under reducing conditions. The long-term control of metal bioavailability in the tailings wetland will likely be related to the presence and continual build-up of organic carbon binding sites in the developing wetland above the tailings. Metal speciation including free-metal ion concentration and the impact of physico-chemical parameters particularly pH and organic matter, were investigated to assess ecotoxicological risk. Results indicate that potentially bioavailable metals (the sum of the exchangeable and reducible fractions) within the tailings wetland are similar to values cited for natural wetlands. Estimated free-metal ion concentrations calculated from geochemical regression models indicate lower free-metal ion concentrations of Cd in the tailings wetland than natural wetlands and slightly higher free-metal ion concentrations of Pb and Zn. Increased concentrations of metals in roots, rhizomes and stems of emergent macrophytes did not occur in the tailings wetland. Even though a substantial number of Typha latifolia plants were found rooting directly into tailings, elevated metals were not found in these plant tissues. Phragmites also did not exhibit elevated metal concentrations in any plant tissues. Typha and Phragmites populations appear to be exhibiting metal-tolerant behaviour. The chemistry of the water column and sediments in Silvermines wetland were also investigated and were much more indicative of a wetland system impacted by heavy metal contamination than the tailings-wetland. Mean Dc, Fe, Mn, Pb and Zn concentrations in the water column and sediments of Silvermines wetlands were substantially higher than in the pilot wetlands and closely approximate concentrations in these matrices contaminated with metals from mining. In addition, mean sulphate concentration in Silvermines wetland was substantially higher and is closer to sulphate concentrations in waters associated with mining. Potentially bioavailable metals were substantially elevated in Silvermines wetland in comparison to the pilot wetlands and higher than those calculated for natural rive sediments. However, Fe oxy-hydroxide concentrations in Silvermines sediments are also much higher than in the pilot wetlands and this significantly impacts the concentration of free-metal ions in the sediment porewater. The free-metal ion concentrations for Pb and Zn indicate that Silvermines wetland is retaining metals and acting as a treatment wetland for drainage emanating from Silvermines tailings dam.
Resumo:
The problem of waste management is causing growing concern due to increasing generation rates, the emissions into soil, water and air, the social conflicts derived from the election of disposal sites and the loss of resources and energy among others. In this work, an innovative methodology is used to enable a better understanding of the waste generation and management system in Italy. Two new waste indicators are built to complement the conventional indicators used by official statistics. Then a multi-scale analysis of the Density of Waste Disposed (DWD) is carried out to highlight the territorial diversity of waste performances and test its contribution to detect plausible risky areas. Starting from Italian regions, the scale down goes on to the provincial level and, only for the region of Campania, the municipal one. First, the analysis shows that the DWD is able to complement the information provided by the conventional waste indicators. Second, the analysis shows the limitations of using a unique institutional solution to waste management problems. In this sense the multi-scale analysis provides with a more realistic picture of Italian waste system than using a single scale.
Resumo:
How much water we really need depends on water functions and the mechanisms of daily water balance regulation. The aim of this review is to describe the physiology of water balance and consequently to highlight the new recommendations with regard to water requirements. Water has numerous roles in the human body. It acts as a building material; as a solvent, reaction medium and reactant; as a carrier for nutrients and waste products; in thermoregulation; and as a lubricant and shock absorber. The regulation of water balance is very precise, as a loss of 1% of body water is usually compensated within 24 h. Both water intake and water losses are controlled to reach water balance. Minute changes in plasma osmolarity are the main factors that trigger these homeostatic mechanisms. Healthy adults regulate water balance with precision, but young infants and elderly people are at greater risk of dehydration. Dehydration can affect consciousness and can induce speech incoherence, extremity weakness, hypotonia of ocular globes, orthostatic hypotension and tachycardia. Human water requirements are not based on a minimal intake because it might lead to a water deficit due to numerous factors that modify water needs (climate, physical activity, diet and so on). Water needs are based on experimentally derived intake levels that are expected to meet the nutritional adequacy of a healthy population. The regulation of water balance is essential for the maintenance of health and life. On an average, a sedentary adult should drink 1.5 l of water per day, as water is the only liquid nutrient that is really essential for body hydration.
Resumo:
The aim of this survey is to assess the microbiological impact of irrigation water on lettuces produced on two urban agricultural sites and sold on markets; 6 and 7%, respectively, of lettuces coming from the sites of Pikine and Patte d'Oie were Salmonella spp. positive. Lettuces irrigated with shallow groundwater (''Ceanes'' water) were more contaminated (8% at both Pikine and Patte d'Oie sites) compared to those irrigated with wastewater (4% at Pikine) or well water (5% at Patte d'Oie). As for the lettuces in marketplaces, their contamination seems to depend on the type of treatment occurring before sale. Lettuces previously washed in the ``Ceanes'' were more contaminated than those rinsed with tap water at the marketplace. Salmonella spp. have been isolated from all marketplaces. However, the rates of contamination in markets surrounding Patte d'Oie are higher (9 and 11% at Grand Yoff and Dalifort) than those surrounding Pikine (4 and 2% at Zinc and Sham) or Rufisque, the control (2%). Our results confirm that the reuse of wastewater in irrigation is an alternative to animal manure. Its risk of microbial contamination can be significantly reduced by washing the vegetables with tap water before they are sold. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
The Iowa livestock industry generates large quantities of manure and other organic residues; composed of feces, urine, bedding material, waste feed, dilution water, and mortalities. Often viewed as a waste material, little has been done to characterize and determine the usefulness of this resource. The Iowa Department of Natural Resources initiated the process to assess in detail the manure resource and the potential utilization of this resource through anaerobic digestion coupled with energy recovery. Many of the pieces required to assess the manure resource already exist, albeit in disparate forms and locations. This study began by interpreting and integrating existing Federal, State, ISU studies, and other sources of livestock numbers, housing, and management information. With these data, models were analyzed to determine energy production and economic feasibility of energy recovery using anaerobic digestion facilities on livestock faxms. Having these data individual facilities and clusters that appear economically feasible can be identified specifically through the use of a GIs system for further investigation. Also livestock facilities and clusters of facilities with high methane recovery potential can be the focus of targeted educational programs through Cooperative Extension network and other outreach networks, providing a more intensive counterpoint to broadly based educational efforts.
Resumo:
What is in this review produced by The Iowa Department of Agricultural and Land Stewardship: Special Points of Interest: • CREP wetlands remove 40-90% of the nitrate and 90+% of the herbicide in tile drainage water from upper- lying croplands. • The watershed approach is comprehensive, efficient and effective resource management. • The Mines & Minerals Bureau, through the AML Program, worked with various watershed groups to secure an additional $1 million dollars in funding for the construction on AML projects in Marion and Mahaska counties. • Iowa Learning Farm is Building a Culture of Conservation: Farmer to Farmer—Iowan to Iowan.
Resumo:
Two concentration methods for fast and routine determination of caffeine (using HPLC-UV detection) in surface, and wastewater are evaluated. Both methods are based on solid-phase extraction (SPE) concentration with octadecyl silica sorbents. A common “offline” SPE procedure shows that quantitative recovery of caffeine is obtained with 2 mL of an elution mixture solvent methanol-water containing at least 60% methanol. The method detection limit is 0.1 μg L−1 when percolating 1 L samples through the cartridge. The development of an “online” SPE method based on a mini-SPE column, containing 100 mg of the same sorbent, directly connected to the HPLC system allows the method detection limit to be decreased to 10 ng L−1 with a sample volume of 100 mL. The “offline” SPE method is applied to the analysis of caffeine in wastewater samples, whereas the “on-line” method is used for analysis in natural waters from streams receiving significant water intakes from local wastewater treatment plants
Resumo:
Mining in the State of Minas Gerais-Brazil is one of the activities with the strongest impact on the environment, in spite of its economical importance. Amongst mining activities, acid drainage poses a serious environmental problem due to its widespread practice in gold-extracting areas. It originates from metal-sulfide oxidation, which causes water acidification, increasing the risk of toxic element mobilization and water resource pollution. This research aimed to evaluate the acid drainage problem in Minas Gerais State. The study began with a bibliographic survey at FEAM (Environment Foundation of Minas Gerais State) to identify mining sites where sulfides occur. Substrate samples were collected from these sites to determine AP (acidity potential) and NP (neutralization potential). The AP was evaluated by the procedure of the total sulfide content and by oxygen peroxide oxidation, followed by acidity titration. The NP was evaluated by the calcium carbonate equivalent. Petrographic thin sections were also mounted and described with a special view to sulfides and carbonates. Based on the chemical analysis, the acid-base accounting (ABA) was determined by the difference of AP and NP, and the acid drainage potential obtained by the ABA value and the total volume of material at each site. Results allowed the identification of substrates with potential to generate acid drainage in Minas Gerais state. Altogether these activities represent a potential to produce between 3.1 to 10.4 billions of m³ of water at pH 2 or 31.4 to 103.7 billions of m³ of water at pH 3. This, in turn, would imply in costs of US$ 7.8 to 25.9 millions to neutralize the acidity with commercial limestone. These figures are probably underestimated because some mines were not surveyed, whereas, in other cases, surface samples may not represent reality. A more reliable state-wide evaluation of the acid drainage potential would require further studies, including a larger number of samples. Such investigations should consider other mining operations beyond the scope of this study as well as the kinetics of the acid generation by simulated weathering procedures.
Resumo:
A software for the calculation of unsaturated soil hydraulic conductivity K(theta) is presented for commonly used methods found in the literature, based on field experiments in which a soil profile is submitted to water infiltration followed by internal drainage. The software is available at: dourado@esalq.usp.br.
Resumo:
Acid Mine Drainage (AMD) is one of the main environmental impacts caused by mining. Thus, innovative mitigation strategies should be exploited, to neutralize acidity and prevent mobilization of trace elements in AMD. The use of industrial byproducts has been considered an economically and environmentally effective alternative to remediate acid mine drainage. Therefore, the objective of this study was to evaluate the use of steel slag to mitigate acid mine drainage in a sulfidic material from a uranium mine, as an alternative to the use of limestone. Thus, increasing doses of two neutralizing agents were applied to a sulfidic material from the uranium mine Osamu Utsumi in Caldas, Minas Gerais State. A steel slag from the company ArcelorMittal Tubarão and a commercial limestone were used as neutralizing agents. The experiment was conducted in leaching columns, arranged in a completely randomized, [(2 x 3) + 1] factorial design, consisting of two neutralizing agents, three doses and one control, in three replications, totaling 21 experimental units. Electrical conductivity (EC), pH and the concentrations of Al, As, Ca, Cd, Cu, Fe, Mn, Ni, S, Se, and Zn were evaluated in the leached solutions. The trace element concentration was evaluated by ICP-OES. Furthermore, the CO2 emission was measured at the top of the leaching columns by capturing in NaOH solution and titration with HCl, in the presence of BaCl2. An increase in the pH of the leachate was observed for both neutralizing agents, with slightly higher values for steel slag. The EC was lower at the higher lime dose at an early stage of the experiment, and CO2 emission was greater with the use of limestone compared to steel slag. A decrease in trace element mobilization in the presence of both neutralizing agents was also observed. Therefore, the results showed that the use of steel slag is a suitable alternative to mitigate AMD, with the advantage of reducing CO2 emissions to the atmosphere compared to limestone.
Resumo:
Detailed knowledge on water percolation into the soil in irrigated areas is fundamental for solving problems of drainage, pollution and the recharge of underground aquifers. The aim of this study was to evaluate the percolation estimated by time-domain-reflectometry (TDR) in a drainage lysimeter. We used Darcy's law with K(θ) functions determined by field and laboratory methods and by the change in water storage in the soil profile at 16 points of moisture measurement at different time intervals. A sandy clay soil was saturated and covered with plastic sheet to prevent evaporation and an internal drainage trial in a drainage lysimeter was installed. The relationship between the observed and estimated percolation values was evaluated by linear regression analysis. The results suggest that percolation in the field or laboratory can be estimated based on continuous monitoring with TDR, and at short time intervals, of the variations in soil water storage. The precision and accuracy of this approach are similar to those of the lysimeter and it has advantages over the other evaluated methods, of which the most relevant are the possibility of estimating percolation in short time intervals and exemption from the predetermination of soil hydraulic properties such as water retention and hydraulic conductivity. The estimates obtained by the Darcy-Buckingham equation for percolation levels using function K(θ) predicted by the method of Hillel et al. (1972) provided compatible water percolation estimates with those obtained in the lysimeter at time intervals greater than 1 h. The methods of Libardi et al. (1980), Sisson et al. (1980) and van Genuchten (1980) underestimated water percolation.
Resumo:
Water degradation is strongly related to agricultural activity. The aim of this study was to evaluate the influence of land use and some environmental components on surface water quality in the Campestre catchment, located in Colombo, state of Parana, Brazil. Physical and chemical attributes were analyzed (total nitrogen, ammonium, nitrate, total phosphorus, electrical conductivity, pH, temperature, turbidity, total solids, biological oxygen demand, chemical oxygen demand and dissolved oxygen). Monthly samples of the river water were taken over one year at eight monitoring sites, distributed over three sub-basins. Overall, water quality was worse in the sub-basin with a higher percentage of agriculture, and was also affected by a lower percentage of native forest and permanent preservation area, and a larger drainage area. Water quality was also negatively affected by the presence of agriculture in the riparian zone. In the summer season, probably due to higher rainfall and intensive soil use, a higher concentration of total nitrogen and particulate nitrogen was observed, as well as higher electrical conductivity, pH and turbidity. All attributes, except for total phosphorus, were in compliance with Brazilian Conama Resolution Nº 357/2005 for freshwater class 1. However, it should be noted that these results referred to the base flow and did not represent a discharge condition since most of the water samples were not collected at or near the rainfall event.
Resumo:
Field capacity (FC) is a parameter widely used in applied soil science. However, its in situ method of determination may be difficult to apply, generally because of the need of large supplies of water at the test sites. Ottoni Filho et al. (2014) proposed a standardized procedure for field determination of FC and showed that such in situ FC can be estimated by a linear pedotransfer function (PTF) based on volumetric soil water content at the matric potential of -6 kPa [θ(6)] for the same soils used in the present study. The objective of this study was to use soil moisture data below a double ring infiltrometer measured 48 h after the end of the infiltration test in order to develop PTFs for standard in situ FC. We found that such ring FC data were an average of 0.03 m³ m- 3 greater than standard FC values. The linear PTF that was developed for the ring FC data based only on θ(6) was nearly as accurate as the equivalent PTF reported by Ottoni Filho et al. (2014), which was developed for the standard FC data. The root mean squared residues of FC determined from both PTFs were about 0.02 m³ m- 3. The proposed method has the advantage of estimating the soil in situ FC using the water applied in the infiltration test.