878 resultados para WATER-SOLUBLE POLYETHERS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclodextrins are water-soluble cyclic oligosaccharides consisting of six, seven, and eight α-(1,4)-linked glucopyranose subunits. This study reports the use of different cyclodextrins in eye drop formulations to improve the aqueous solubility and corneal permeability of riboflavin. Riboflavin is a poorly soluble drug with a solubility up to 0.08 mg mL–1 in deionized water. It is used as a drug topically administered to the eye to mediate UV-induced corneal cross-linking in the treatment of keratoconus. Aqueous solutions of β-cyclodextrin (10–30 mg mL–1) can enhance the solubility of riboflavin up to 0.12–0.19 mg mL–1, whereas the higher concentration of α-cyclodextrin (100 mg mL–1) achieved a lower level of enhancement of 0.11 mg mL–1. The other oligosaccharides were found to be inefficient for this purpose. In vitro diffusion experiments performed with fresh and cryopreserved bovine cornea have demonstrated that β-cyclodextrin enhances riboflavin permeability. The mechanism of this enhancement was examined through microscopic histological analysis of the cornea and is discussed in this paper.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The last decade has seen successful clinical application of polymer–protein conjugates (e.g. Oncaspar, Neulasta) and promising results in clinical trials with polymer–anticancer drug conjugates. This, together with the realisation that nanomedicines may play an important future role in cancer diagnosis and treatment, has increased interest in this emerging field. More than 10 anticancer conjugates have now entered clinical development. Phase I/II clinical trials involving N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (PK1; FCE28068) showed a four- to fivefold reduction in anthracycline-related toxicity, and, despite cumulative doses up to 1680 mg/m2 (doxorubicin equivalent), no cardiotoxicity was observed. Antitumour activity in chemotherapy-resistant/refractory patients (including breast cancer) was also seen at doxorubicin doses of 80–320 mg/m2, consistent with tumour targeting by the enhanced permeability (EPR) effect. Hints, preclinical and clinical, that polymer anthracycline conjugation can bypass multidrug resistance (MDR) reinforce our hope that polymer drugs will prove useful in improving treatment of endocrine-related cancers. These promising early clinical results open the possibility of using the water-soluble polymers as platforms for delivery of a cocktail of pendant drugs. In particular, we have recently described the first conjugates to combine endocrine therapy and chemotherapy. Their markedly enhanced in vitro activity encourages further development of such novel, polymer-based combination therapies. This review briefly describes the current status of polymer therapeutics as anticancer agents, and discusses the opportunities for design of second-generation, polymer-based combination therapy, including the cocktail of agents that will be needed to treat resistant metastatic cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cell walls of wheat (Triticum aestivum) starchy endosperm are dominated by arabinoxylan (AX), accounting for 65% to 70% of the polysaccharide content. Genes within two glycosyl transferase (GT) families, GT43 (IRREGULAR XYLEM9 [IRX9] and IRX14) and GT47 (IRX10), have previously been shown to be involved in the synthesis of the xylan backbone in Arabidopsis, and close homologs of these have been implicated in the synthesis of xylan in other species. Here, homologs of IRX10 TaGT47_2 and IRX9 TaGT43_2, which are highly expressed in wheat starchy endosperm cells, were suppressed by RNA interference (RNAi) constructs driven by a starchy endosperm-specific promoter. The total amount of AX was decreased by 40% to 50% and the degree of arabinosylation was increased by 25% to 30% in transgenic lines carrying either of the transgenes. The cell walls of starchy endosperm in sections of grain from TaGT43_2 and TaGT47_2 RNAi transgenics showed decreased immunolabeling for xylan and arabinoxylan epitopes and approximately 50% decreased cell wall thickness compared with controls. The proportion of AX that was water soluble was not significantly affected, but average AX polymer chain length was decreased in both TaGT43_2 and TaGT47_2 RNAi transgenics. However, the long AX chains seen in controls were absent in TaGT43_2 RNAi transgenics but still present in TaGT47_2 RNAi transgenics. The results support an emerging picture of IRX9-like and IRX10-like proteins acting as key components in the xylan synthesis machinery in both dicots and grasses. Since AX is the main component of dietary fiber in wheat foods, the TaGT43_2 and TaGT47_2 genes are of major importance to human nutrition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ripening processes of 24 apple cultivars were examined in the United Kingdom National Fruit Collection in 2010. Basically the starch content, and additionally ground colour, water-soluble solids content and flesh firmness were studied during ripening. The degradation of the starch content was evaluated using a 0–10 scale. A starch degradation value of 50% was taken to be the optimum harvest date, with harvest beginning at a value of 40% and finishing at 60%. Depending on the cultivar, this represented a harvest window of 9 to 21 days. Later ripening cultivars matured more slowly, leading to a longer harvesting period, with the exception of cv. Feuillemorte. Pronounced differences were observed among the cultivars on the basis of the starch degradation pattern, allowing them to be divided into four groups. Separate charts were elaborated for each group that are recommended for use in practice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(Nvinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The factors influencing the formation of water-in-134a-propellant microemulsions using the fluorinated ionic surfactants ammonium perfluorooctanoate, ammonium perfluoroheptanoate, and sodium perfluorooctanoate has been determined. None of the fluorinated ionic surfactants could be used to prepare clear, one-phase systems when used as sole surfactant, but they could be when combined with a short-chain fluoro- or hydrocarbon alcohol in surfactant:cosurfactant weight-mixing ratios (K(m)) in the range 1:2 to 2:1. When hydrocarbon alcohols were used this clear region extended over a wide range of compositions and was confirmed by means of photon correlation spectroscopy (PCS) to contain microemulsion droplets in the propellant-rich part of the phase diagram. PCS studies performed in the presence of the water-soluble drug terbutaline sulfate showed that it was possible to solubilize the drug within water-in-propellant microemulsion droplets. These studies confirm for the first time that it is possible to prepare water-in-propellant 134a microemulsions using fluorinated ionic surfactants and to solubilize water-soluble drugs within these systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A structurally related series of fluorinated nonionic oxyethylene glycol surfactants of the type C(m)F(2m+1)(CH(2))(n)O[(CH(2)CH(2)O)(p)H], denoted C(m.n)E(p) (where m=4, 6, or 7, m=1 or 2, and p=4 or 6) were synthesized and their surface behavior in aqueous solution was characterized. The ability of these surfactants to form water-in-hydrofluorocarbon (HFC) propellant 134a microemulsions suitable for use in the aerosolized delivery of water-soluble drugs has been investigated. Phase studies showed that, regardless of the composition used, clear one-phase systems could not be prepared if a fluorinated nonionic surfactant was used alone, or in combination with a short or medium fluorocarbon alcohol cosurfactant. Clear one-phase systems could, however, be prepared if a short-chain hydrocarbon alcohol, such as ethanol, n-propanol, or n-pentanol, was used as cosurfactant, with the extent of the one-phase region increasing with decreased chain length of the alcohol cosurfactant. Light-scattering studies on a number of the hydrocarbon-alcoholcontaining systems in the propellant-rich part of the phase diagram showed that only systems prepared with C(4.2)E(6) and propanol contained microemulsion droplets (all other systems investigated were considered to be cosolvent systems).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water soluble anionic and cationic bis-triazine ligands are able to suppress (mask) the extraction of corrosion and fission products such as Ni(II) and Pd(II) that are found in PUREX raffinates. Thus it is possible to separate these elements from the minor actinide Am(III). Although some masking agents have previously been developed that retard the extraction of Pd(II), this is the first time a masking agent has been developed for Ni(II).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pasture-based ruminant production systems are common in certain areas of the world, but energy evaluation in grazing cattle is performed with equations developed, in their majority, with sheep or cattle fed total mixed rations. The aim of the current study was to develop predictions of metabolisable energy (ME) concentrations in fresh-cut grass offered to non-pregnant non-lactating cows at maintenance energy level, which may be more suitable for grazing cattle. Data were collected from three digestibility trials performed over consecutive grazing seasons. In order to cover a range of commercial conditions and data availability in pasture-based systems, thirty-eight equations for the prediction of energy concentrations and ratios were developed. An internal validation was performed for all equations and also for existing predictions of grass ME. Prediction error for ME using nutrient digestibility was lowest when gross energy (GE) or organic matter digestibilities were used as sole predictors, while the addition of grass nutrient contents reduced the difference between predicted and actual values, and explained more variation. Addition of N, GE and diethyl ether extract (EE) contents improved accuracy when digestible organic matter in DM was the primary predictor. When digestible energy was the primary explanatory variable, prediction error was relatively low, but addition of water-soluble carbohydrates, EE and acid-detergent fibre contents of grass decreased prediction error. Equations developed in the current study showed lower prediction errors when compared with those of existing equations, and may thus allow for an improved prediction of ME in practice, which is critical for the sustainability of pasture-based systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Improved nutrient utilization efficiency is strongly related to enhanced economic performance and reduced environmental footprint of dairy farms. Pasture-based systems are widely used for dairy production in certain areas of the world, but prediction equations of fresh grass nutritive value (nutrient digestibility and energy concentrations) are limited. Equations to predict digestible energy (DE) and metabolizable energy (ME) used for grazing cattle have been either developed with cattle fed conserved forage and concentrate diets or sheep fed previously frozen grass, and the majority of them require measurements less commonly available to producers, such as nutrient digestibility. The aim of the present study was therefore to develop prediction equations more suitable to grazing cattle for nutrient digestibility and energy concentrations, which are routinely available at farm level by using grass nutrient contents as predictors. A study with 33 nonpregnant, nonlactating cows fed solely fresh-cut grass at maintenance energy level for 50 wk was carried out over 3 consecutive grazing seasons. Freshly harvested grass of 3 cuts (primary growth and first and second regrowth), 9 fertilizer input levels, and contrasting stage of maturity (3 to 9 wk after harvest) was used, thus ensuring a wide representation of nutritional quality. As a result, a large variation existed in digestibility of dry matter (0.642-0.900) and digestible organic matter in dry matter (0.636-0.851) and in concentrations of DE (11.8-16.7 MJ/kg of dry matter) and ME (9.0-14.1 MJ/kg of dry matter). Nutrient digestibilities and DE and ME concentrations were negatively related to grass neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents but positively related to nitrogen (N), gross energy, and ether extract (EE) contents. For each predicted variable (nutrient digestibilities or energy concentrations), different combinations of predictors (grass chemical composition) were found to be significant and increase the explained variation. For example, relatively higher R(2) values were found for prediction of N digestibility using N and EE as predictors; gross-energy digestibility using EE, NDF, ADF, and ash; NDF, ADF, and organic matter digestibilities using N, water-soluble carbohydrates, EE, and NDF; digestible organic matter in dry matter using water-soluble carbohydrates, EE, NDF, and ADF; DE concentration using gross energy, EE, NDF, ADF, and ash; and ME concentration using N, EE, ADF, and ash. Equations presented may allow a relatively quick and easy prediction of grass quality and, hence, better grazing utilization on commercial and research farms, where nutrient composition falls within the range assessed in the current study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study aimed to identify key parameters influencing N utilization and develop prediction equations for manure N output (MN), feces N output (FN), and urine N output (UN). Data were obtained under a series of digestibility trials with nonpregnant dry cows fed fresh grass at maintenance level. Grass was cut from 8 different ryegrass swards measured from early to late maturity in 2007 and 2008 (2 primary growth, 3 first regrowth, and 3 second regrowth) and from 2 primary growth early maturity swards in 2009. Each grass was offered to a group of 4 cows and 2 groups were used in each of the 8 swards in 2007 and 2008 for daily measurements over 6 wk; the first group (first 3 wk) and the second group (last 3 wk) assessed early and late maturity grass, respectively. Average values of continuous 3-d data of N intake (NI) and output for individual cows ( = 464) and grass nutrient contents ( = 116) were used in the statistical analysis. Grass N content was positively related to GE and ME contents but negatively related to grass water-soluble carbohydrates (WSC), NDF, and ADF contents ( < 0.01), indicating that accounting for nutrient interrelations is a crucial aspect of N mitigation. Significantly greater ratios of UN:FN, UN:MN, and UN:NI were found with increased grass WSC contents and ratios of N:WSC, N:digestible OM in total DM (DOMD), and N:ME ( < 0.01). Greater NI, animal BW, and grass N contents and lower grass WSC, NDF, ADF, DOMD, and ME concentrations were significantly associated with greater MN, FN, and UN ( < 0.05). The present study highlighted that using grass lower in N and greater in fermentable energy in animals fed solely fresh grass at maintenance level can improve N utilization, reduce N outputs, and shift part of N excretion toward feces rather than urine. These outcomes are highly desirable in mitigation strategies to reduce nitrous oxide emissions from livestock. Equations predicting N output from BW and grass N content explained a similar amount of variability as using NI and grass chemical composition (excluding DOMD and ME), implying that parameters easily measurable in practice could be used for estimating N outputs. In a research environment, where grass DOMD and ME are likely to be available, their use to predict N outputs is highly recommended because they strongly improved of the equations in the current study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Distillers’ Dried Grains with Solubles (DDGS) is the major by-product of bioethanol and distillery plants. Due to its high content of proteins, water-soluble vitamins and minerals, DDGS has been long marketed as animal feed for livestock. EU legislation on liquid biofuels could raise the demand on bioethanol production in Europe, with a resulting increase in DDGS availability. DDGS contains a spectrum of complex organic macromolecules, particularly polysaccharides, in addition to proteins and vitamins, and its use as a starting raw material within a biomass-based biorefining strategy could lead to the development of multi-stream processes for the production of commodities, platform molecules or speciality chemicals, with concomitant economic benefits and waste reduction for bioethanol plants. The present review aims to outline the compositional characteristics of DDGS and evaluate its potential utilisation as a starting material for the production of added-value products. Parameters of influence on the chemical and physical characteristics of DDGS are discussed. Moreover, various pre-treatment strategies are outlined in terms of efficient DDGS fractionation into several added value streams. Additional processing steps for the production of medium and high added value compounds from DDGS are evaluated and their potential applications in the food and chemical industry sector are identified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The gelatin prepared from the skins of the Atlantic halibut (Hippoglossus hippoglossus) was investigated for the development of edible films plasticized with 30g sorbitol/100g gelatin. Two types of dry gelatin preparations were obtained depending on whether an intermediate evaporation step at 60 degrees C in the drying procedure is included or not. The amino acid composition, molecular weight distribution (determined by SDS-polyacrylamide gel electrophoresis) and glass transition temperature (determined by differential scanning calorimetry) of the gelatins were determined and related to some physical properties of the resulting films. The gelatin extracted from the halibut skins showed a suitable filmogenic capacity, leading to transparent, weakly colored, water-soluble and highly extensible films. The intermediate evaporation step at 60 degrees C induced thermal protein degradation, causing the resulting films to be significantly less resistant and more extensible. No differences in water vapor permeability, viscoelasticity, glass transition or color properties were evidenced between the two gelatins tested. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Because of human actions, biomarkers have become important to detect and mitigate pollution. This study showed that crystalloids can be a biomarker for analyses of low levels of water-soluble fractions of oil (WSF). Antarctic sea urchins (Sterechinus neumayeri) from regions free of pollution were exposed for 2, 5, 10 and 15 days at different levels of WSF (0.4, 0.8 and 1.2 ppm). No significant differences were observed in the phagocytic rates or the germicide capacity for the yeast Saccharomyces cerevisiae; however, there was a significant increase in the quantity of intranuclear iron crystalloids in phagocytic amoebocytes of urchins exposed to higher levels of WSF. This study characterizes histological alterations in crystalloids of S. neumayeri that could be used as a biomarker for oil contaminants, with a simple and inexpensive protocol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The concentrations of the water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), chloride (Cl-), and sulfate (SO42-), were measured from September to November 2002 at a pasture site in the Amazon Basin (Rondnia, Brazil) (LBA-SMOCC). Measurements were conducted using a semi-continuous technique (Wet-annular denuder/Steam-Jet Aerosol Collector: WAD/SJAC) and three integrating filter-based methods, namely (1) a denuder-filter pack (DFP: Teflon and impregnated Whatman filters), (2) a stacked-filter unit (SFU: polycarbonate filters), and (3) a High Volume dichotomous sampler (HiVol: quartz fiber filters). Measurements covered the late dry season (biomass burning), a transition period, and the onset of the wet season (clean conditions). Analyses of the particles collected on filters were performed using ion chromatography (IC) and Particle-Induced X-ray Emission spectrometry (PIXE). Season-dependent discrepancies were observed between the WAD/SJAC system and the filter-based samplers. During the dry season, when PM2.5 (D-p <= 2.5 mu m) concentrations were similar to 100 mu g m(-3), aerosol NH4+ and SO42- measured by the filter-based samplers were on average two times higher than those determined by the WAD/SJAC. Concentrations of aerosol NO3- and Cl- measured with the HiVol during daytime, and with the DFP during day- and nighttime also exceeded those of the WAD/SJAC by a factor of two. In contrast, aerosol NO3- and Cl- measured with the SFU during the dry season were nearly two times lower than those measured by the WAD/SJAC. These differences declined markedly during the transition period and towards the cleaner conditions during the onset of the wet season (PM2.5 similar to 5 mu g m(-3)); when filter-based samplers measured on average 40-90% less than the WAD/SJAC. The differences were not due to consistent systematic biases of the analytical techniques, but were apparently a result of prevailing environmental conditions and different sampling procedures. For the transition period and wet season, the significance of our results is reduced by a low number of data points. We argue that the observed differences are mainly attributable to (a) positive and negative filter sampling artifacts, (b) presence of organic compounds and organosulfates on filter substrates, and (c) a SJAC sampling efficiency of less than 100%.