966 resultados para Vocal fold nodules
Uranium and radioactive isotopes in bottom sediments and Fe-Mn nodules and crusts of seas and oceans
Resumo:
The main stages of the sedimentary cycle of uranium in modern marine basins are under consideration in the book. Annually about 18 thousand tons of dissolved and suspended uranium enters the ocean with river runoff. Depending on a type of a marine basin uranium accumulated either in sediments of deep-sea basins, or in sediments of continental shelves and slopes. In the surface layer of marine sediments hydrogenic uranium is predominantly bound with organic matter, and in ocean sediments also with iron, manganese and phosphorus. In diagenetic processes there occurs partial redistribution of uranium in sediments, as well as its concentration in iron-manganese, phosphate and carbonate nodules and biogenic phosphate detritus. Concentration of uranium in marine sediments of various types depending on their composition, as well as on forms of its entering, degree of differentiation and of sedimentation rates, on hydrochemical regime and water circulation, and on intensity of diagenetic processes.
Resumo:
Ferromanganese nodules in the deep-sea and in freshwater lakes usually accrete layers rich in manganese oxides alternating with layers rich in iron oxides. The mechanism producing these alternating layers is unknown; indeed, the mechanism producing the nodules themselves is unknown. In Oneida Lake, New York, precipitants from the lake water and the surfaces of nodules at the sediment-water interface are enriched in Mn, whereas nodules buried in lake sediments have surface layers enriched in Fe. It is hypothesized here, using field and laboratory evidence, that reduction and mobilization of Mn from the nodule surface during periods of anoxic sediment cover produce the high Fe layers observed in the nodules.
Resumo:
The manganese nodules occur in greater or less quantity all over the ocean-bed, and most abundantly in the Pacific. They occur in all sizes, from minute grains to masses of a pound weight, and even greater, and form nodular concretions of concentric shells, round a nucleus, which is very frequently a piece of pumice or a shark's tooth. Their outside has a peculiar and very characteristic mammillated surface, which enables them to be identified at a glance. When freshly brought up they are very soft, being easily scraped to powder with a knife. They gradually get harder on exposure to the air. The powder, heated in a closed tube, gives out water which re-acts alkaline, and has an empyreumatic odour. Heated with strong hydrochloric acid, it liberates abundance of chlorine, and the residue which remains is white, consisting of silica, clay, and sand, the sand being the same as is found in the bottom mud from the same locality. Their composition varies greatly, different nodules containing different quantities of mechanically admixed mud, and the number of different elements found in them is very large. Copper, iron, cobalt, nickel, manganese, alumina, lime, magnesia, silica, and phosphoric acid have been detected in a large number; but I have not as yet been able to make a complete analysis of any of them. I have, however, made a few determinations of the most important component substances. For this purpose the outside and densest layers of the nodules were selected, and portions of them were pulverised and dried for ten or twelve hours at 140° C. The amount of chlorine liberated on treatment with hydrochloric acid was determined by Bunsen's method, and the iron was determined by titration with stannous chloride. The samples analysed were from four different localities.
Resumo:
Manganese-iron oxide concretions are presently forming on Patrick Sill in upper Jervis Inlet. The marine geology of Patrick Sill and the adjoining basins (Queen's Reach and Princess Royal Reach) was studied to define the environment in which the concretions form. The river at the inlet head is the principal source of sediment to the upper basin. The average grain size of surficial bottom sediments within this basin decreases uniformly with distance from the source. Patrick Sill separates the upper from the lower basin. The sediment distribution pattern within the lower basin differs markedly from the upper basin as there is no dominant source of material but rather many localized sources. Abundant shallow marine faunal remains recovered in deep water sediment samples indicate that sediments deposited as deltas off river and stream mouths periodically slump to the basin floors. Geologic and optical turbidity information for the upper basin can best be explained by slumping from the delta at the inlet head with the initiation of turbidity or density currents. Patrick Sill appears to create a downstream barrier to this flow. The mineralogy of the bottom sediments indicates derivation from a granitic terrain. If this is so, the sediments presently being deposited in both basins are reworked glacial materials initially derived by glacial action outside the present watershed. Upper Jervis Inlet is mapped as lying within a roof pendant of pre-batholithic rocks, principally slates. Patrick Sill is thought to be a bedrock feature mantled with Pleistocene glacial material. The accumulation rate of recent sediments on the sill is low especially in the V-notch or medial depression. The manganese-iron oxide concretions are forming within the depression and apparently nowhere else in the study area. Also forming within the depression are crusts of iron oxide and what are tentatively identified as glauconite-montmorillonoid pellets. The concretions are thought to form by precipitation of manganese-iron oxides on pebbles and cobbles lying at the sediment water interface. The oxide materials are mobile in the reducing environment of the underlying clayey-sand sediment but precipitate on contact with the oxygenating environment of the surficial sediments. The iron crusts are thought to be forming on extensive rocky surfaces above the sediment water interface. The overall appearance and evidence of rapid formation of the crusts suggests they formed from a gel in sea water. Reserves of manganese-iron concretions on Patrick Sill were estimated to be 117 metric tons. Other deposits of concretions have recently been found in other inlets and in the Strait of Georgia but, to date, the extent of these has not been determined.