1000 resultados para Vehicle Status.
Resumo:
Using the recently developed model predictive static programming (MPSP) technique, a nonlinear suboptimal reentry guidance scheme is presented in this paper for a reusable launch vehicle (RLV). Unlike traditional RLV guidance, the problem considered over here is restricted only to pitch plane maneuver of the vehicle, which allows simpler mission planning and vehicle load management. The computationally efficient MPSP technique brings in the philosophy of trajectory optimization into the framework of guidance design, which in turn results in very effective guidance schemes in general. In the problem addressed in this paper, it successfully guides the RLV through the critical reentry phase both by constraining it to the allowable narrow flight corridor as well as by meeting the terminal constraints at the end of the reentry segment. The guidance design is validated by considering possible aerodynamic uncertainties as well as dispersions in the initial conditions. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
The peaking of most oil reserves and impending climate change are critically driving the adoption of solar photovoltaic's (PV) as a sustainable renewable and eco-friendly alternative. Ongoing material research has yet to find a breakthrough in significantly raising the conversion efficiency of commercial PV modules. The installation of PV systems for optimum yield is primarily dictated by its geographic location (latitude and available solar insolation) and installation design (tilt, orientation and altitude) to maximize solar exposure. However, once these parameters have been addressed appropriately, there are other depending factors that arise in determining the system performance (efficiency and output). Dust is the lesser acknowledged factor that significantly influences the performance of the PV installations. This paper provides an appraisal on the current status of research in studying the impact of dust on PV system performance and identifies challenges to further pertinent research. A framework to understand the various factors that govern the settling/assimilation of dust and likely mitigation measures have been discussed in this paper. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper discusses the potential of the hybrid rocket engine as a viable and attractive mode of propulsion for both space vehicles and missiles. Research and development work on this engine in other countries is presented and evaluated. The various advantages of a hybrid engine over solid and liquid engines and its problems are highlighted. It has been argued that because of the low technology needed in the development of the hybrid system, it constitutes a cost-and-time-effective propulsion system for several applications in space programmes as well as weapon systems. In support of this conclusion, experience on the developmental studies of a variable thrust 100 kg engine is presented. Some future possibilities for hybrid propulsion systems are cited.
Resumo:
The status of the tree biomass resource was investigated in Ungra, a semi-arid village ecosystem in South India. There were 57 tree species with 12 trees capita−1 and 35 trees ha−1. Multiple benefit yielding local tree species dominated the village ecosystem, while fuel only or single end use trees accounted for a small proportion of trees. The standing tree biomass is adequate to meet the requirement of biomass fuels for cooking only for about two years. Village tree biomass is presently being depleted largely for export to urban areas. Tree regeneration is now characterized by transformation from multiple-use local tree species to a few single-use species. A large potential exists for tree biomass production along field boundaries (bunds), stream banks and roadsides. Biomass estimation equations were developed for 10 species.
Resumo:
The major contribution of this paper is to introduce load compatibility constraints in the mathematical model for the capacitated vehicle routing problem with pickup and deliveries. The employee transportation problem in the Indian call centers and transportation of hazardous materials provided the motivation for this variation. In this paper we develop a integer programming model for the vehicle routing problem with load compatibility constraints. Specifically two types of load compatability constraints are introduced, namely mutual exclusion and conditional exclusion. The model is demonstrated with an application from the employee transportation problem in the Indian call centers.
Resumo:
Details of an efficient optimal closed-loop guidance algorithm for a three-dimensional launch are presented with simulation results. Two types of orbital injections, with either true anomaly or argument of perigee being free at injection, are considered. The resulting steering-angle profile under the assumption of uniform gravity lies in a canted plane which transforms a three-dimensional problem into an equivalent two-dimensional one. Effects of thrust are estimated using a series in a recursive way. Encke's method is used to predict the trajectory during powered flight and then to compute the changes due to actual gravity using two gravity-related vectors. Guidance parameters are evaluated using the linear differential correction method. Optimality of the algorithm is tested against a standard ground-based trajectory optimization package. The performance of the algorithm is tested for accuracy, robustness, and efficiency for a sun-synchronous mission involving guidance for a multistage vehicle that requires large pitch and yaw maneuver. To demonstrate applicability of the algorithm to a range of missions, injection into a geostationary transfer orbit is also considered. The performance of the present algorithm is found to be much better than others.
Resumo:
It is observed that general explicit guidance schemes exhibit numerical instability close to the injection point. This difficulty is normally attributed to the demand for exact injection which, in turn, calls for finite corrections to be enforced in a relatively short time. The deviations in vehicle state which need corrective maneuvers are caused by the off-nominal operating conditions. Hence, the onset of terminal instability depends on the type of off-nominal conditions encountered. The proposed separate terminal guidance scheme overcomes the above difficulty by minimizing a quadratic penalty on injection errors rather than demanding an exact injection. There is also a special requirement in the terminal phase for the faster guidance computations. The faster guidance computations facilitate a more frequent guidance update enabling an accurate terminal thrust cutoff. The objective of faster computations is realized in the terminal guidance scheme by employing realistic assumptions that are accurate enough for a short terminal trajectory. It is observed from simulations that one of the guidance parameters (P) related to the thrust steering angular rates can indicate the onset of terminal instability due to different off-nominal operating conditions. Therefore, the terminal guidance scheme can be dynamically invoked based on monitoring of deviations in the lone parameter P.
Resumo:
Madras triple helix’ was the name assigned by the scientific community in the West, to the molecular model proposed for the fibrous protein collagen, by G N Ramachandran’s group at the University of Madras. As mentioned jocularly in a recent retrospective of this work by Sasisekharan and Yathindra [1], the term was possibly coined due to the difficulty of Western scientists in pronouncing the Indian names of Ramachandran and his associates. The unravelling of the precise nature of collagen structure indeed makes for a fascinating story and as succinctly put by Dickerson [2]: “... to trace the evolution of the structure of collagen is to trace the evolution of fibrous protein crystallography in miniature”. This article is a brief review highlighting the pioneering contributions made by G N Ramachandran in elucidating the correct structure of this important molecule and is a sincere tribute by the author to her mentor, doctoral thesis supervisor and major source of inspiration for embarking on a career in biophysics
Resumo:
The worldwide research in nanoelectronics is motivated by the fact that scaling of MOSFETs by conventional top down approach will not continue for ever due to fundamental limits imposed by physics even if it is delayed for some more years. The research community in this domain has largely become multidisciplinary trying to discover novel transistor structures built with novel materials so that semiconductor industry can continue to follow its projected roadmap. However, setting up and running a nanoelectronics facility for research is hugely expensive. Therefore it is a common model to setup a central networked facility that can be shared with large number of users across the research community. The Centres for Excellence in Nanoelectronics (CEN) at Indian Institute of Science, Bangalore (IISc) and Indian Institute of Technology, Bombay (IITB) are such central networked facilities setup with funding of about USD 20 million from the Department of Information Technology (DIT), Ministry of Communications and Information Technology (MCIT), Government of India, in 2005. Indian Nanoelectronics Users Program (INUP) is a missionary program not only to spread awareness and provide training in nanoelectronics but also to provide easy access to the latest facilities at CEN in IISc and at IITB for the wider nanoelectronics research community in India. This program, also funded by MCIT, aims to train researchers by conducting workshops, hands-on training programs, and providing access to CEN facilities. This is a unique program aiming to expedite nanoelectronics research in the country, as the funding for projects required for projects proposed by researchers from around India has prior financial approval from the government and requires only technical approval by the IISc/ IITB team. This paper discusses the objectives of INUP, gives brief descriptions of CEN facilities, the training programs conducted by INUP and list various research activities currently under way in the program.
Resumo:
Progress in the development of contraceptive vaccines for males and females is reviewed. Based on the criteria which need to be met with, none of the proposed candidate antigens meets the requirements for use as a contraceptive vaccine for human application. One of the major problems is the need for periodic injections to maintain required titre and use of an alternate method until effective titres are obtained. Some of the problems associated with active immunization approach can be overcome by the use of preformed, highly specific, potent antibodies. Some progress has been achieved in this direction by the use of humanized single chain monoclonal antibodies to human chorionic gonadotropin.
Resumo:
An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A I-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.
Resumo:
The Malabar Pied Hornbill, Anthracoceros coronatus, is a near threatened species, endemic to the tropical deciduous forests of central and southern India and Sri Lanka. The Dandeli region in Karnataka (India) is believed to be the last stronghold of this species in the Western Ghats biodiversity hotspot. Being a rapidly developing area with a growing human population, the threats to this species and their habitat are mounting, especially due to a large number of hydroelectric projects and habitat fragmentation caused by paper and plywood industries. This study evaluated the change in population status of the Malabar Pied Hornbill over a 23 year period and defined priorities for the long term conservation and monitoring of hornbills in Dandeli. Encounter rates of hornbills were also analysed in relation to the density and species richness of trees and fruiting trees, basal area, canopy cover and distance from river. Hornbill encounters were not significantly different compared to the earlier study carried out by Reddy in 1988, but were significantly different across the five sites in the current study. Higher numbers of hornbills were encountered closer to the river, but these results were only marginally significant. The mean numbers of hornbills recorded at the two roost sites identified in Dandeli were 26 +/- 4.47 (n=16 counts) and 31.78 +/- 3.53 (n=14 counts) respectively. The study also helped build local awareness about the species, train local Forest Department staff in monitoring hornbills and develop a management plan for its conservation.