943 resultados para Unit Cell And Indentation Models
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Monalysin was recently described as a novel pore-forming toxin (PFT) secreted by the Drosophila pathogen Pseudomonas entomophila. Recombinant monalysin is multimeric in solution, whereas PFTs are supposed to be monomeric until target membrane association. Monalysin crystals were obtained by the hanging-drop vapour-diffusion method using PEG 8000 as precipitant. Preliminary X-ray diffraction analysis revealed that monalysin crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 162.4, b = 146.2, c = 144.4 Å, β = 122.8°, and diffracted to 2.85 Å resolution using synchrotron radiation. Patterson self-rotation analysis and Matthews coefficient calculation indicate that the asymmetric unit contains nine copies of monalysin. Heavy-atom derivative data were collected and a Ta6Br14 cluster derivative data set confirmed the presence of ninefold noncrystallographic symmetry.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
BACKGROUND: Abdominal infections are frequent causes of sepsis and septic shock in the intensive care unit (ICU) and are associated with adverse outcomes. We analyzed the characteristics, treatments and outcome of ICU patients with abdominal infections using data extracted from a one-day point prevalence study, the Extended Prevalence of Infection in the ICU (EPIC) II. METHODS: EPIC II included 13,796 adult patients from 1,265 ICUs in 75 countries. Infection was defined using the International Sepsis Forum criteria. Microbiological analyses were performed locally. Participating ICUs provided patient follow-up until hospital discharge or for 60 days. RESULTS: Of the 7,087 infected patients, 1,392 (19.6%) had an abdominal infection on the study day (60% male, mean age 62 ± 16 years, SAPS II score 39 ± 16, SOFA score 7.6 ± 4.6). Microbiological cultures were positive in 931 (67%) patients, most commonly Gram-negative bacteria (48.0%). Antibiotics were administered to 1366 (98.1%) patients. Patients who had been in the ICU for ≤ 2 days prior to the study day had more Escherichia coli, methicillin-sensitive Staphylococcus aureus and anaerobic isolates, and fewer enterococci than patients who had been in the ICU longer. ICU and hospital mortality rates were 29.4% and 36.3%, respectively. ICU mortality was higher in patients with abdominal infections than in those with other infections (29.4% vs. 24.4%, p < 0.001). In multivariable analysis, hematological malignancy, mechanical ventilation, cirrhosis, need for renal replacement therapy and SAPS II score were independently associated with increased mortality. CONCLUSIONS: The characteristics, microbiology and antibiotic treatment of abdominal infections in critically ill patients are diverse. Mortality in patients with isolated abdominal infections was higher than in those who had other infections.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
Mycophenolate mofetil (MMF), an ester prodrug of the immunosuppressant mycophenolic acid (MPA), is widely used for maintenance immunosuppressive therapy and prevention of renal allograft rejection in renal transplant recipients.MPA inhibits inosine monophosphate dehydrogenase (IMPDH), an enzyme involved in the “de novo” synthesis of purine nucleotides, thus suppressing both T-cell and B-cell proliferation. MPA shows a complex pharmacokinetics with considerable interand intra- patient by between- and within patient variabilities associated to MPA exposure. Several factors may contribute to it. The pharmacokinetic modeling according to the population pharmacokinetic approach with the non-linear mixed effects models has shown to be a powerful tool to describe the relationships between MMF doses and the MPA exposures and also to identify potential predictive patients’ demographic and clinical characteristics for dose tailoring during the post-transplant immunosuppresive treatment.
Resumo:
In past years, comprehensive representations of cell signalling pathways have been developed by manual curation from literature, which requires huge effort and would benefit from information stored in databases and from automatic retrieval and integration methods. Once a reconstruction of the network of interactions is achieved, analysis of its structural features and its dynamic behaviour can take place. Mathematical modelling techniques are used to simulate the complex behaviour of cell signalling networks, which ultimately sheds light on the mechanisms leading to complex diseases or helps in the identification of drug targets. A variety of databases containing information on cell signalling pathways have been developed in conjunction with methodologies to access and analyse the data. In principle, the scenario is prepared to make the most of this information for the analysis of the dynamics of signalling pathways. However, are the knowledge repositories of signalling pathways ready to realize the systems biology promise? In this article we aim to initiate this discussion and to provide some insights on this issue.
Resumo:
BACKGROUND: Chronic kidney disease (CKD) is associated to a higher stroke risk. Anemia is a common consequence of CKD, and is also a possible risk factor for cerebrovascular diseases. The purpose of this study was to examine if anemia and CKD are independent risk factors for mortality after stroke. METHODS: This historic cohort study was based on a stroke registry and included patients treated for a first clinical stroke in the stroke unit of one academic hospital over a three-year period. Mortality predictors comprised demographic characteristics, CKD, glomerular filtration rate (GFR), anemia and other stroke risk factors. GFR was estimated by means of the simplified Modification of Diet in Renal Disease formula. Renal function was assessed according to the Kidney Disease Outcomes Quality Initiative (K/DOQI)-CKD classification in five groups. A value of hemoglobin < 120 g/L in women and < 130 g/L in men on admission defined anemia. Kaplan-Meier survival curves and Cox models were used to describe and analyze one-year survival. RESULTS: Among 890 adult stroke patients, the mean (Standard Deviation) calculated GFR was 64.3 (17.8) ml/min/1.73 m2 and 17% had anemia. Eighty-two (10%) patients died during the first year after discharge. Among those, 50 (61%) had K/DOQI CKD stages 3 to 5 and 32 (39%) stages 1 or 2 (p < 0.001). Anemia was associated with an increased risk of death one year after discharge (p < 0.001). After adjustment for other factors, a higher hemoglobin level was independently associated with decreased mortality one year after discharge [hazard ratio (95% CI) 0.98 (0.97-1.00)]. CONCLUSIONS: Both CKD and anemia are frequent among stroke patients and are potential risk factors for decreased one-year survival. The inclusion of patients with a first-ever clinical stroke only and the determination of anemia based on one single measure, on admission, constitute limitations to the external validity. We should investigate if an early detection and management of both CKD and anemia could improve survival in stroke patients.
Resumo:
Purpose/Objective: Tuberculosis (TB) is the second worldwide leading cause of death from an infectious disease after HIV infection. Protective immunity to Mycobacterium tuberculosis (Mtb) remains poorly understood and the role of Mtb-specific CD8 T-cells is controversial. We performed comprehensive functional and phenotypic characterizations of Mtb-specific CD8 T-cell responses in 273 subjects with either latent Mtb infection (LTBI) or active TB disease (TB) to assess their profile and relevance in TB. Materials and methods: Using multi-parametric flow cytometry, we assessed Mtb-specific CD8 T-cell functional (production of IFNgamma, IL-2 and TNF-alpha; proliferation capacity and cytotoxicity) and phenotypic (T-cell differentiation and exhaustion) profiles in cells isolated from peripheral blood and correlated these profiles with distinct clinical presentations. Results: Mtb-specific CD8 T-cells were detected in most TB patients and few LTBI subjects (65% and 15%, respectively; P < 0.00001) and were of similar magnitude with a comparable cytokines profile (IFNg+TNFa+IL2-) in both groups. Mtb-specific CD8 T-cells were mostly TEMRA (CD45RA+ CCR7-) co-expressing 2B4 and CD160 in LTBI subjects and mostly TEM (CD45RA-CCR7-) lacking PD-1/ CD160/2B4 in TB patients. Furthermore, Mtb-specific CD8 T-cells mostly expressed very little perforin and granulysin but contained granzymes A and B or lacked all these cytotoxic markers in TB and LTBI subjects, respectively. However, in vitro expanded Mtb-specific CD8 T-cells acquired perforin, granulysin and granzymes. Finally, Mtb-specific CD8 T-cell responses were more robust and prone to proliferate in patients with extrapulmonary compared to pulmonary TB. Conclusions: The clinical status and TB presentation are associated to specific profiles of Mtb-specific CD8 T-cell responses, thus indicating distinct dynamics between the mycobacteria, the CD8 T-cell response and the clinical outcome. Our data shed light on the controversial reached by studies performed in human and animal models, thus advancing the current knowledge on the complex dynamic of TB immunity.
Resumo:
The collecting duct of normal kidney exhibits significant activity of the MEK1/2-ERK1/2 pathway as shown in vivo by immunostaining of phosphorylated active ERK1/2 (pERK1/2). The MEK1/2-ERK1/2 pathway controls many different ion transports both in proximal and distal nephron, raising the question of whether this pathway is involved in the basal and/or hormone-dependent transepithelial sodium reabsorption in the principal cell of the cortical collecting duct (CCD), a process mediated by the apical epithelial sodium channel and the basolateral sodium pump (Na,K-ATPase). To answer this question we used ex vivo microdissected CCDs from normal mouse kidney or in vitro cultured mpkCCDcl4 principal cells. Significant basal levels of pERK1/2 were observed ex vivo and in vitro. Aldosterone and vasopressin, known to up-regulate sodium reabsorption in CCDs, did not change ERK1/2 activity either ex vivo or in vitro. Basal and aldosterone- or vasopressin-stimulated sodium transport was down-regulated by the MEK1/2 inhibitor PD98059, in parallel with a decrease in pERK1/2 in vitro. The activity of Na,K-ATPase but not that of epithelial sodium channel was inhibited by MEK1/2 inhibitors in both unstimulated and aldosterone- or vasopressin-stimulated CCDs in vitro. Cell surface biotinylation showed that intrinsic activity rather than cell surface expression of Na,K-ATPase was controlled by pERK1/2. PD98059 also significantly inhibited the activity of Na,K-ATPase ex vivo. Our data demonstrate that the ERK1/2 pathway controls Na,K-ATPase activity and transepithelial sodium transport in the principal cell and indicate that basal constitutive activity of the ERK1/2 pathway is a critical component of this control.
Resumo:
Mature T-cell and T/NK-cell neoplasms are both uncommon and heterogeneous, among the broad category of non-Hodgkin's lymphomas. Due to the lack of specific genetic alterations in the vast majority of cases, most currently defined entities show overlapping morphologic and immunophenotypic features and therefore pose a challenge to the diagnostic pathologist. The goal of the symposium is to address current criteria for the recognition of specific subtypes of T-cell lymphoma, and to highlight new data regarding emerging immunophenotypic or molecular markers. This activity has been designed to meet the needs of practicing pathologists, and residents and fellows enrolled in training programs in anatomic and clinical pathology. It should be a particular benefit to those with an interest in hematopathology. Upon completion of this activity, participants should be better able to: -To be able to state the basis for the classification of mature T-cell malignancies involving nodal and extranodal sites. -To recognize and accurately diagnose the various subtypes of nodal and extranodal peripheral T-cell lymphomas. -To utilize immunohistochemical and molecular tests to characterize atypical T-cell proliferations. -To recognize and accurately diagnose T-cell lymphoproliferative lesions involving the skin and gastrointestinal tract, and be able to provide guidance regarding their clinical aggressiveness and management -To be able to utilize flow cytometric data to identify diverse functional T-cell subsets.
Resumo:
The depositional stratigraphy of within-channel deposits in sandy braided rivers is dominated by a variety of barforms (both singular `unit' bars and complex `compound' bars), as well as the infill of individual channels (herein termed `channel fills'). The deposits of bars and channel fills define the key components of facies models for braided rivers and their within-channel heterogeneity, knowledge of which is important for reservoir characterization. However, few studies have sought to address the question of whether the deposits of bars and channel fills can be readily differentiated from each other. This paper presents the first quantitative study to achieve this aim, using aerial images of an evolving modern sandy braided river and geophysical imaging of its subsurface deposits. Aerial photographs taken between 2000 and 2004 document the abandonment and fill of a 1 3 km long, 80 m wide anabranch channel in the sandy braided South Saskatchewan River, Canada. Upstream river regulation traps the majority of very fine sediment and there is little clay (<1%) in the bed sediments. Channel abandonment was initiated by a series of unit bars that stalled and progressively blocked the anabranch entrance, together with dune deposition and stacking at the anabranch entrance and exit. Complete channel abandonment and subsequent fill of up to 3 m of sediment took approximately two years. Thirteen kilometres of ground-penetrating radar surveys, coupled with 18 cores, were obtained over the channel fill and an adjacent 750 m long, 400 m wide, compound bar, enabling a quantitative analysis of the channel and bar deposits. Results show that, in terms of grain-size trends, facies proportions and scale of deposits, there are only subtle differences between the channel fill and bar deposits which, therefore, renders them indistinguishable. Thus, it may be inappropriate to assign different geometric and sedimentological attributes to channel fill and bar facies in object-based models of sandy braided river alluvial architecture.
A priori parameterisation of the CERES soil-crop models and tests against several European data sets
Resumo:
Mechanistic soil-crop models have become indispensable tools to investigate the effect of management practices on the productivity or environmental impacts of arable crops. Ideally these models may claim to be universally applicable because they simulate the major processes governing the fate of inputs such as fertiliser nitrogen or pesticides. However, because they deal with complex systems and uncertain phenomena, site-specific calibration is usually a prerequisite to ensure their predictions are realistic. This statement implies that some experimental knowledge on the system to be simulated should be available prior to any modelling attempt, and raises a tremendous limitation to practical applications of models. Because the demand for more general simulation results is high, modellers have nevertheless taken the bold step of extrapolating a model tested within a limited sample of real conditions to a much larger domain. While methodological questions are often disregarded in this extrapolation process, they are specifically addressed in this paper, and in particular the issue of models a priori parameterisation. We thus implemented and tested a standard procedure to parameterize the soil components of a modified version of the CERES models. The procedure converts routinely-available soil properties into functional characteristics by means of pedo-transfer functions. The resulting predictions of soil water and nitrogen dynamics, as well as crop biomass, nitrogen content and leaf area index were compared to observations from trials conducted in five locations across Europe (southern Italy, northern Spain, northern France and northern Germany). In three cases, the model’s performance was judged acceptable when compared to experimental errors on the measurements, based on a test of the model’s root mean squared error (RMSE). Significant deviations between observations and model outputs were however noted in all sites, and could be ascribed to various model routines. In decreasing importance, these were: water balance, the turnover of soil organic matter, and crop N uptake. A better match to field observations could therefore be achieved by visually adjusting related parameters, such as field-capacity water content or the size of soil microbial biomass. As a result, model predictions fell within the measurement errors in all sites for most variables, and the model’s RMSE was within the range of published values for similar tests. We conclude that the proposed a priori method yields acceptable simulations with only a 50% probability, a figure which may be greatly increased through a posteriori calibration. Modellers should thus exercise caution when extrapolating their models to a large sample of pedo-climatic conditions for which they have only limited information.
Resumo:
Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.