928 resultados para Unconstrained and convex optimization
Resumo:
Double Degree
Resumo:
Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.
Resumo:
The increasing trend of disaster victims globally is posing a complex challenge for disaster management authorities. Moreover, to accomplish successful transition between preparedness and response, it is important to consider the different features inherent to each type of disaster. Floods are portrayed as one of the most frequent and harmful disasters, hence introducing the necessity to develop a tool for disaster preparedness to perform efficient and effective flood management. The purpose of the article is to introduce a method to simultaneously define the proper location of shelters and distribution centers, along with the allocation of prepositioned goods and distribution decisions required to satisfy flood victims. The tool combines the use of a raster geographical information system (GIS) and an optimization model. The GIS determines the flood hazard of the city areas aiming to assess the flood situation and to discard floodable facilities. Then, the multi-commodity multimodal optimization model is solved to obtain the Pareto frontier of two criteria: distance and cost. The methodology was applied to a case study in the flood of Villahermosa, Mexico, in 2007, and the results were compared to an optimized scenario of the guidelines followed by Mexican authorities, concluding that the value of the performance measures was improved using the developed method. Furthermore, the results exhibited the possibility to provide adequate care for people affected with less facilities than the current approach and the advantages of considering more than one distribution center for relief prepositioning.
Resumo:
Les métaheuristiques sont très utilisées dans le domaine de l'optimisation discrète. Elles permettent d’obtenir une solution de bonne qualité en un temps raisonnable, pour des problèmes qui sont de grande taille, complexes, et difficiles à résoudre. Souvent, les métaheuristiques ont beaucoup de paramètres que l’utilisateur doit ajuster manuellement pour un problème donné. L'objectif d'une métaheuristique adaptative est de permettre l'ajustement automatique de certains paramètres par la méthode, en se basant sur l’instance à résoudre. La métaheuristique adaptative, en utilisant les connaissances préalables dans la compréhension du problème, des notions de l'apprentissage machine et des domaines associés, crée une méthode plus générale et automatique pour résoudre des problèmes. L’optimisation globale des complexes miniers vise à établir les mouvements des matériaux dans les mines et les flux de traitement afin de maximiser la valeur économique du système. Souvent, en raison du grand nombre de variables entières dans le modèle, de la présence de contraintes complexes et de contraintes non-linéaires, il devient prohibitif de résoudre ces modèles en utilisant les optimiseurs disponibles dans l’industrie. Par conséquent, les métaheuristiques sont souvent utilisées pour l’optimisation de complexes miniers. Ce mémoire améliore un procédé de recuit simulé développé par Goodfellow & Dimitrakopoulos (2016) pour l’optimisation stochastique des complexes miniers stochastiques. La méthode développée par les auteurs nécessite beaucoup de paramètres pour fonctionner. Un de ceux-ci est de savoir comment la méthode de recuit simulé cherche dans le voisinage local de solutions. Ce mémoire implémente une méthode adaptative de recherche dans le voisinage pour améliorer la qualité d'une solution. Les résultats numériques montrent une augmentation jusqu'à 10% de la valeur de la fonction économique.
Resumo:
El departamento de mercadeo y ventas es fundamental en una empresa debido a que es el encargado de desarrollar e implementar estrategias que satisfagan las necesidades y requerimientos del cliente. Es aquí donde más se puede ver reflejado el aumento de las ventas de la empresa. El servicio al cliente, la relación con el mismo y el acompañamiento, es un tema muy importante a tratar, tanto para atraer a nuevos clientes como también para conservar a los clientes actuales. Este trabajo se desarrolló con base en la problemática de la creciente pérdida de clientes de la empresa Leader Ltda., y tiene como objetivo diseñar y crear un plan de mercadeo y ventas para la misma. Por medio de un estudio no experimental, descriptivo e interpretativo se enfocó en diferentes análisis internos y externos de la compañía para poder desarrollar un plan de acción que se pueda implementar en la compañía.
Resumo:
Stroke stands for one of the most frequent causes of death, without distinguishing age or genders. Despite representing an expressive mortality fig-ure, the disease also causes long-term disabilities with a huge recovery time, which goes in parallel with costs. However, stroke and health diseases may also be prevented considering illness evidence. Therefore, the present work will start with the development of a decision support system to assess stroke risk, centered on a formal framework based on Logic Programming for knowledge rep-resentation and reasoning, complemented with a Case Based Reasoning (CBR) approach to computing. Indeed, and in order to target practically the CBR cycle, a normalization and an optimization phases were introduced, and clustering methods were used, then reducing the search space and enhancing the cases re-trieval one. On the other hand, and aiming at an improvement of the CBR theo-retical basis, the predicates` attributes were normalized to the interval 0…1, and the extensions of the predicates that match the universe of discourse were re-written, and set not only in terms of an evaluation of its Quality-of-Information (QoI), but also in terms of an assessment of a Degree-of-Confidence (DoC), a measure of one`s confidence that they fit into a given interval, taking into account their domains, i.e., each predicate attribute will be given in terms of a pair (QoI, DoC), a simple and elegant way to represent data or knowledge of the type incomplete, self-contradictory, or even unknown.
Resumo:
The spatial distribution of the magnetic field and the coupling between the coils in the Wireless Power Transfer (WPT) systems is an important aspect to consider in the system design and efficiency optimization. The presented study in this paper is based on tests performed on a physical model. The transmitting (primary) equipment, is an electrical three-phase system, capable to be connected in star or delta (both electrically and geometrically). The measured results allow to describe graphically the magnetic field distribution in three dimensions. The analytical formulas aim to help to understand and to quantify the physical phenomena but they cannot be considered a universal approach and the measurement results help to understand better the observable facts. In the WPT, the key issues that will influence the efficiency, are the alignment of the coils, the spatial orientation of the magnetic field, the detachment and the tilt between the windings, all they changing the magnetic coupling between the transmitter and the receiver of energy. This research is directed not only to the magnetic field distribution but finally, to optimize the energy transfer efficiency.
Resumo:
Recent technological development has enabled research- ers to gather data from different performance scenarios while considering players positioning and action events within a specific time frame. This technology varies from global positioning systems to radio frequency devices and computer vision tracking, to name the most common, and aims to collect players’ time motion data and enable the dynamical analysis of performance. Team sports—and in particular, invasion games—present a complex dynamic by nature based on the interaction between 2 opposing sides trying to outperform 1 another. During match and training situations, players’ actions are coupled to their performance context at different interaction levels. As expected, ball, teammates’, and opponents’ positioning play an important role in this interaction process. But other factors, such as final score, teams’ development level, and players’ expertise, seem to affect the match dynamics. In this symposium, we will focus on how different constraints affect invasion games dynamics during both match and training situations. This relation will be established while underpinning the importance of these effects to game teaching and performance optimization. Regarding the match, different performance indicators based on spatial-temporal relations between players and teams will be presented to reveal the interaction processes that form the crucial component of game analysis. Considering the training, this symposium will address the relationship of small-sided games with full- sized matches and will present how players’ dynamical interaction affects different performance indicators.
Resumo:
A possible future scenario for the water injection (WI) application has been explored as an advanced strategy for modern GDI engines. The aim is to verify whether the PWI (Port Water Injection) and DWI (Direct Water Injection) architectures can replace current fuel enrichment strategies to limit turbine inlet temperatures (TiT) and knock engine attitude. In this way, it might be possible to extend the stoichiometric mixture condition over the entire engine map, meeting possible future restrictions in the use of AES (Auxiliary Emission Strategies) and future emission limitations. The research was first addressed through a comprehensive assessment of the state-of-the-art of the technology and the main effects of the chemical-physical water properties. Then, detailed chemical kinetics simulations were performed in order to compute the effects of WI on combustion development and auto-ignition. The latter represents an important methodology step for accurate numerical combustion simulations. The water injection was then analysed in detail for a PWI system, through an experimental campaign for macroscopic and microscopic injector characterization inside a test chamber. The collected data were used to perform a numerical validation of the spray models, obtaining an excellent matching in terms of particle size and droplet velocity distributions. Finally, a wide range of three-dimensional CFD simulations of a virtual high-bmep engine were realized and compared, exploring also different engine designs and water/fuel injection strategies under non-reacting and reacting flow conditions. According to the latter, it was found that thanks to the introduction of water, for both PWI and DWI systems, it could be possible to obtain an increase of the target performance and an optimization of the bsfc (Break Specific Fuel Consumption), lowering the engine knock risk at the same time, while the TiT target has been achieved hardly only for one DWI configuration.
Resumo:
The present work proposes different approaches to extend the mathematical methods of supervisory energy management used in terrestrial environments to the maritime sector, that diverges in constraints, variables and disturbances. The aim is to find the optimal real-time solution that includes the minimization of a defined track time, while maintaining the classical energetic approach. Starting from analyzing and modelling the powertrain and boat dynamics, the energy economy problem formulation is done, following the mathematical principles behind the optimal control theory. Then, an adaptation aimed in finding a winning strategy for the Monaco Energy Boat Challenge endurance trial is performed via ECMS and A-ECMS control strategies, which lead to a more accurate knowledge of energy sources and boat’s behaviour. The simulations show that the algorithm accomplishes fuel economy and time optimization targets, but the latter adds huge tuning and calculation complexity. In order to assess a practical implementation on real hardware, the knowledge of the previous approaches has been translated into a rule-based algorithm, that let it be run on an embedded CPU. Finally, the algorithm has been tuned and tested in a real-world race scenario, showing promising results.
Resumo:
The presented Thesis describes the design of RF-energy harvesting systems with applications on different environments, from the biomedical side to the industrial one, tackling the common thread problem which is the design of complete energy autonomous tags each of them with its dedicated purpose. This Thesis gathers a work of three years in the field of energy harvesting system design, a combination of full-wave electromagnetic designs to optimize not only the antenna performance but also to fulfill the requirements given by each case study such as dimensions, insensitivity from the surrounding environment, flexibility and compliance with regulations. The research activity has been based on the development of highly-demanded ideas and real-case necessities which are in line with the environment in which modern IoT applications can really make a positive contribution. The Thesis is organized as follows: the first application, described in Chapter 2, regards the design and experimental validations of a rotation-insensitive WPT system for implantable devices. Chapter 3 presents the design of a wearable energy autonomous detector to identify the presence of ethanol on the body surface. Chapter 4 describes investigations in the use of Bessel Beam launchers for creating a highly-focused energy harvesting link for wearable applications. Reduced dimensions, high focusing and decoupling from the human body are the key points to be addressed during the full-wave design and nonlinear optimization of the receiver antenna. Finally, Chapter 5 presents an energy autonomous system exploiting LoRa (Long Range) nodes for tracking trailers in industrial plants. The novelty behind this design lies on the aim of obtaining a perfectly scalable system that exploits not only EH basic operating system but embeds a seamless solution for collecting a certain amount of power that varies with respect the received power level on the antenna, without the need of additional off-the-shelf components.
Resumo:
A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibited.
Resumo:
Augmented Lagrangian methods for large-scale optimization usually require efficient algorithms for minimization with box constraints. On the other hand, active-set box-constraint methods employ unconstrained optimization algorithms for minimization inside the faces of the box. Several approaches may be employed for computing internal search directions in the large-scale case. In this paper a minimal-memory quasi-Newton approach with secant preconditioners is proposed, taking into account the structure of Augmented Lagrangians that come from the popular Powell-Hestenes-Rockafellar scheme. A combined algorithm, that uses the quasi-Newton formula or a truncated-Newton procedure, depending on the presence of active constraints in the penalty-Lagrangian function, is also suggested. Numerical experiments using the Cute collection are presented.
Resumo:
Image restoration attempts to enhance images corrupted by noise and blurring effects. Iterative approaches can better control the restoration algorithm in order to find a compromise of restoring high details in smoothed regions without increasing the noise. Techniques based on Projections Onto Convex Sets (POCS) have been extensively used in the context of image restoration by projecting the solution onto hyperspaces until some convergence criteria be reached. It is expected that an enhanced image can be obtained at the final of an unknown number of projections. The number of convex sets and its combinations allow designing several image restoration algorithms based on POCS. Here, we address two convex sets: Row-Action Projections (RAP) and Limited Amplitude (LA). Although RAP and LA have already been used in image restoration domain, the former has a relaxation parameter (A) that strongly depends on the characteristics of the image that will be restored, i.e., wrong values of A can lead to poorly restoration results. In this paper, we proposed a hybrid Particle Swarm Optimization (PS0)-POCS image restoration algorithm, in which the A value is obtained by PSO to be further used to restore images by POCS approach. Results showed that the proposed PSO-based restoration algorithm outperformed the widely used Wiener and Richardson-Lucy image restoration algorithms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.