838 resultados para Uncertainty in Wind Energy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last fifty years, Nunavut has developed a deep dependence on diesel for virtually all of its energy needs, including electricity. This dependence has created a number of economic, environmental and health related challenges in the territory, with an estimated 20% of the territory’s annual budget being spent on energy, thereby limiting the Government of Nunavut’s ability to address other essential infrastructure and societal needs, such as education, nutrition and health care and housing. One solution to address this diesel dependency is the use of renewable energy technologies (RETs), such as wind, solar and hydropower. As such, this thesis explores energy alternatives in Nunavut, and through RETScreen renewable energy simulations, found that solar power and wind power are technically viable options for Nunavut communities and a potentially successful means to offset diesel-generated electricity in Nunavut. However, through this analysis it was also discovered that accurate data or renewable resources are often unavailable for most Nunavut communities. Moreover, through qualitative open-ended interviews, the perspectives of Nunavut residents with regards to developing RETs in Nunavut were explored, and it was found that respondents generally supported the use of renewable energy in their communities, while acknowledging that there still remains a knowledge gap among residents regarding renewable energy, stemming from a lack of communication between the communities, government and the utility company. In addition, the perceived challenges, opportunities and gaps that exist with regards to renewable energy policy and program development were discussed with government policy-makers through further interviews, and it was discovered that often government departments work largely independently of each other rather than collaboratively, creating gaps and oversights in renewable energy policy in Nunavut. Combined, the results of this thesis were used to develop a number of recommended policy actions that could be undertaken by the territorial and federal government to support a shift towards renewable energy in order to develop a sustainable and self-sufficient energy plan in Nunavut. They include: gathering accurate renewable resource data in Nunavut; increasing community consultations on the subject of renewable energy; building strong partnerships with universities, colleges and industry; developing a knowledge sharing network; and finally increasing accessibility to renewable energy programs and policies in Nunavut.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent cold winters and prolonged periods of low wind speeds have prompted concerns about the increasing penetration of wind generation in the Irish and other northern European power systems. On the combined Republic of Ireland and Northern Ireland system there was in excess of 1.5 GW of installed wind power in January 2010. As the penetration of these variable, non-dispatchable generators increases, power systems are becoming more sensitive to weather events on the supply side as well as on the demand side. In the temperate climate of Ireland, sensitivity of supply to weather is mainly due to wind variability while demand sensitivity is driven by space heating or cooling loads. The interplay of these two weather-driven effects is of particular concern if demand spikes driven by low temperatures coincide with periods of low winds. In December 2009 and January 2010 Ireland experienced a prolonged spell of unusually cold conditions. During much of this time, wind generation output was low due to low wind speeds. The impacts of this event are presented as a case study of the effects of weather extremes on power systems with high penetrations of variable renewable generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decade there has been a rapid global increase in wind power stimulated by energy and climate policies. However, as wind power is inherently variable and stochastic over a range of time scales, additional system balancing is required to ensure system reliability and stability. This paper reviews the technical, policy and market challenges to achieving ambitious wind power penetration targets in Ireland’s All-Island Grid and examines a number of measures proposed to address these challenges. Current government policy in Ireland is to address these challenges with additional grid reinforcement, interconnection and open-cycle gas plant. More recently smart grid combined with demand side management and electric vehicles have also been presented as options to mitigate the variability of wind power. In addition, the transmission system operators have developed wind farm specific grid codes requiring improved turbine controls and wind power forecasting techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The MaRINET project aims to build a synergy in the European marine renewable energy development infrastructure network, involving a total of 28 partners across the union. Its scope extends from small to large scale testing, in both tank and field. The main activities of the project are to standardize test procedures, to provide centralized free access for European technology developers, and to innovate for improving test infrastructures and techniques.
This paper presents the work carried in this last part, which focuses on research objectives identified to be current challenges for industrial development. They are distributed in 6 topics. On the one hand are issues that concern directly one of the 3 types of energy scoped in the project: wave, tidal, and offshore wind energy. Two examples are the real time estimation of incident waves, and the measurement of turbulence in tidal flows. On the other hand, collaborative effort is drawn on aspects that are common to those technologies: electrical components, environmental monitoring, and dedicated moorings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This short paper, structured in 3 distinct sections will touch on some of the key features of the Oyster wave energy device and its recent development. The first section discusses the nature of the resource in the nearshore environment,
some common misunderstandings in relation to it and its suitability for exploitation of commercial wave energy. In the second section a brief description of some of the fundamentals governing flap type devices is given. This serves to emphasise core differences between the Oyster device and other devices. Despite the simplicity of the design and the operation of the device itself, it is shown that Oyster occupies a theoretical space which is substantially outside most established theories and axioms in wave energy. The third section will give a short summary of the recent developments in the design of the Oyster 2 project and touch on how its enhanced features deal with some of the key commercial and technical challenges present in the sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing installed capacities of wind power in an effort to achieve sustainable power systems for future generations pose problems for system operators. Volatility in generation volumes due to the adoption of stochastic wind power is increasing. Storage has been shown to act as a buffer for these stochastic energy sources, facilitating the integration of renewable energy into a historically inflexible power system. This paper examines peak and off peak benefits realised by installing a short term discharge storage unit in a system with a high penetration of wind power in 2020. A fully representative unit commitment and economic dispatch model is used to analyse two scenarios, one ‘with storage’ and one ‘without storage’. Key findings of this preliminary study show that wind curtailment can be reduced in the storage scenario, with a larger reduction in peak time ramping of gas generators is realised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of wind power in some power systems is hampered by the system requirement for emergency reserve to cover loss of the biggest infeed. The study demonstrates that reserve provision from the wind sector itself has economic and operational benefits. A heuristic algorithm has been developed that can model the relevant aspects of emergency reserve provision in a system with both thermal and wind generations. The proposed algorithm is first validated by comparing its performance with established economic scheduling methods applied to a representative power system. The algorithm is then used to demonstrate the economic benefit of reserve provision from the wind sector. It is shown that such provision reduces wind energy curtailment and thermal unit ramping. Finally, it is shown that a wind sector capable of providing emergency reserve can expand economically beyond the capacity limit that would otherwise apply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately half of the houses in Northern Ireland were built before any form of minimum thermal specification (U-value) or energy efficiency standard were available. At present, 44% of households are categorised as being in fuel poverty; spending more than 10% of the household income to heat the house to an acceptable level. This paper presents the results from long term performance monitoring of 4 case study houses that have undergone retrofits to improve energy efficiency in Northern Ireland. There is some uncertainty associated with some of the marketed retrofit measures in terms of their effectiveness in reducing energy usage and their potential to cause detrimental impacts on the internal environment of a house. Using wireless sensor technology internal conditions such as temperature and humidity were measured alongside gas and electricity usage for a year. External weather conditions were also monitored. The paper considers the effectiveness of the different retrofit measures implemented based on the long term data monitoring and short term building performance evaluation tests that were completed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many countries the use of renewable energy is increasing due to the introduction of new energy and environmental policies. Thus, the focus on the efficient integration of renewable energy into electric power systems is becoming extremely important. Several European countries have already achieved high penetration of wind based electricity generation and are gradually evolving towards intensive use of this generation technology. The introduction of wind based generation in power systems poses new challenges for the power system operators. This is mainly due to the variability and uncertainty in weather conditions and, consequently, in the wind based generation. In order to deal with this uncertainty and to improve the power system efficiency, adequate wind forecasting tools must be used. This paper proposes a data-mining-based methodology for very short-term wind forecasting, which is suitable to deal with large real databases. The paper includes a case study based on a real database regarding the last three years of wind speed, and results for wind speed forecasting at 5 minutes intervals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind resource evaluation in two sites located in Portugal was performed using the mesoscale modelling system Weather Research and Forecasting (WRF) and the wind resource analysis tool commonly used within the wind power industry, the Wind Atlas Analysis and Application Program (WAsP) microscale model. Wind measurement campaigns were conducted in the selected sites, allowing for a comparison between in situ measurements and simulated wind, in terms of flow characteristics and energy yields estimates. Three different methodologies were tested, aiming to provide an overview of the benefits and limitations of these methodologies for wind resource estimation. In the first methodology the mesoscale model acts like “virtual” wind measuring stations, where wind data was computed by WRF for both sites and inserted directly as input in WAsP. In the second approach, the same procedure was followed but here the terrain influences induced by the mesoscale model low resolution terrain data were removed from the simulated wind data. In the third methodology, the simulated wind data is extracted at the top of the planetary boundary layer height for both sites, aiming to assess if the use of geostrophic winds (which, by definition, are not influenced by the local terrain) can bring any improvement in the models performance. The obtained results for the abovementioned methodologies were compared with those resulting from in situ measurements, in terms of mean wind speed, Weibull probability density function parameters and production estimates, considering the installation of one wind turbine in each site. Results showed that the second tested approach is the one that produces values closest to the measured ones, and fairly acceptable deviations were found using this coupling technique in terms of estimated annual production. However, mesoscale output should not be used directly in wind farm sitting projects, mainly due to the mesoscale model terrain data poor resolution. Instead, the use of mesoscale output in microscale models should be seen as a valid alternative to in situ data mainly for preliminary wind resource assessments, although the application of mesoscale and microscale coupling in areas with complex topography should be done with extreme caution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of Plug-in electric vehicles in the transportation sector has a great potential to reduce oil dependency, the GHG emissions and to contribute for the integration of renewable sources into the electricity generation mix. Portugal has a high share of wind energy, and curtailment may occur, especially during the off-peak hours with high levels of hydro generation. In this context, the electric vehicles, seen as a distributed storage system, can help to reduce the potential wind curtailments and, therefore, increase the integration of wind power into the power system. In order to assess the energy and environmental benefits of this integration, a methodology based on a unit commitment and economic dispatch is adapted and implemented. From this methodology, the thermal generation costs, the CO2 emissions and the potential wind generation curtailment are computed. Simulation results show that a 10% penetration of electric vehicles in the Portuguese fleet would increase electrical load by 3% and reduce wind curtailment by only 26%. This results from the fact that the additional generation required to supply the electric vehicles is mostly thermal. The computed CO2 emissions of the EV are 92 g CO2/kWh which become closer to those of some new ICE engines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of growing amounts of distributed generation in power systems, namely at distribution networks level, has been fostered by energy policies in several countries around the world, including in Europe. This intensive integration of distributed, non-dispatchable, and natural sources based generation (including wind power) has caused several changes in the operation and planning of power systems and of electricity markets. Sometimes the available non-dispatchable generation is higher than the demand. This generation must be used; otherwise it is wasted if not stored or used to supply additional demand. New policies and market rules, as well as new players, are needed in order to competitively integrate all the resources. The methodology proposed in this paper aims at the maximization of the social welfare in a distribution network operated by a virtual power player that aggregates and manages the available energy resources. When facing a situation of excessive non-dispatchable generation, including wind power, real time pricing is applied in order to induce the increase of consumption so that wind curtailment is minimized. This method is especially useful when actual and day-ahead resources forecast differ significantly. The distribution network characteristics and concerns are addressed by including the network constraints in the optimization model. The proposed methodology has been implemented in GAMS optimization tool and its application is illustrated in this paper using a real 937-bus distribution network with 20.310 consumers and 548 distributed generators, some of them non-dispatchable and with must take contracts. The implemented scenario corresponds to a real day in Portuguese power system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the primary goals of the Center for Integrated Space Weather Modeling (CISM) effort is to assess and improve prediction of the solar wind conditions in near‐Earth space, arising from both quasi‐steady and transient structures. We compare 8 years of L1 in situ observations to predictions of the solar wind speed made by the Wang‐Sheeley‐Arge (WSA) empirical model. The mean‐square error (MSE) between the observed and model predictions is used to reach a number of useful conclusions: there is no systematic lag in the WSA predictions, the MSE is found to be highest at solar minimum and lowest during the rise to solar maximum, and the optimal lead time for 1 AU solar wind speed predictions is found to be 3 days. However, MSE is shown to frequently be an inadequate “figure of merit” for assessing solar wind speed predictions. A complementary, event‐based analysis technique is developed in which high‐speed enhancements (HSEs) are systematically selected and associated from observed and model time series. WSA model is validated using comparisons of the number of hit, missed, and false HSEs, along with the timing and speed magnitude errors between the forecasted and observed events. Morphological differences between the different HSE populations are investigated to aid interpretation of the results and improvements to the model. Finally, by defining discrete events in the time series, model predictions from above and below the ecliptic plane can be used to estimate an uncertainty in the predicted HSE arrival times.