899 resultados para UPWELLING DRIVEN
Resumo:
The regional ocean off southeast Brazil (20 degrees S-28 degrees S) is known as a current-eddy-upwelling region. The proximity of the Brazil Current to the coast in the Cape Sao Tome vicinities, as well as of its quasi-stationary unstable meanders, suggests the possibility of background eddy-induced upwelling. Such phenomenon can intensify the prevalent coastal upwelling due to wind and topographic effects. In this paper, with the help of a numerical simulation, we provide evidence that eddy-induced upwelling in the absence of wind is possible in this region. The simulation was conducted with a regional configuration of the 3-D Princeton Ocean Model initialized by a feature-based implementation of the Brazil Current and Cape Frio eddy, blended with climatology. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Huanglongbing (HLB) is associated with Candidatus Liberibacter spp., endogenous, sieve tube-restricted bacteria that are transmitted by citrus psyllid insect vectors. Transgenic expression in the phloem of specific genes that might affect Ca. Liberibacter spp. growth and development may be an adequate strategy to improve citrus resistance to HLB. To study specific phloem gene expression in citrus, we developed three different binary vector constructs with expression cassettes bearing the beta-glucuronidase (GUS) reporter gene (uidA) under the control of one of the three different promoters: Citrus phloem protein 2 (CsPP2), Arabidopsis thaliana phloem protein 2 (AtPP2), and Arabidopsis thaliana sucrose transporter 2 (AtSUC2). Transgenic lines of 'Hamlin', 'Pera', and 'Valencia' sweet oranges [Citrus sinensis (L.) Osbeck] were produced via Agrobacterium tumefaciens transformation. The epicotyl segments collected from in vitro germinated seedlings were used as explants. The gene nptII, which confers resistance to the antibiotic kanamycin, was used for selection. The transformation efficiency was expressed as the number of GUS-positive shoots over the total number of explants and varied from 1.54 to 6.08 % among the three cultivars and three constructs studied. Several lines of the three sweet orange cultivars analyzed using PCR and Southern blot analysis were genetically transformed with the three constructs evaluated. The histological GUS activity in the leaves indicates that the uidA gene was preferentially expressed in the phloem, which suggests that the use of the three promoters might be adequate for producing HLB-resistant transgenic sweet oranges. The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters. Key message The results reported here conclusively demonstrate the preferential expression of GUS in the phloem driven by two heterologous and one homologous gene promoters.
Resumo:
We investigate the interface dynamics of the two-dimensional stochastic Ising model in an external field under helicoidal boundary conditions. At sufficiently low temperatures and fields, the dynamics of the interface is described by an exactly solvable high-spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero range process. Generally, the critical dynamics of the interface fluctuations is in the Kardar-Parisi-Zhang universality class of critical behavior. We remark that a whole family of RSOS interface models similar to the Ising interface model investigated here can be described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This study aimed at analyzing the relationship between slow- and fast-alpha asymmetry within frontal cortex and the planning, execution and voluntary control of saccadic eye movements (SEM), and quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 12 healthy participants performing a fixed (i.e., memory-driven) and a random SEM (i.e., stimulus-driven) condition. We find main effects for SEM condition in slow- and fast-alpha asymmetry at electrodes F3-F4, which are located over premotor cortex, specifically a negative asymmetry between conditions. When analyzing electrodes F7-F8, which are located over prefrontal cortex, we found a main effect for condition in slow-alpha asymmetry, particularly a positive asymmetry between conditions. In conclusion, the present approach supports the association of slow- and fast-alpha bands with the planning and preparation of SEM, and the specific role of these sub-bands for both, the attention network and the coordination and integration of sensory information with a (oculo)-motor response. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The circulation at the Eastern Brazilian Shelf (EBS), near 13 degrees S, is discussed in terms of the currents and hydrography, associating large-scale circulation, transient and local processes to establish a regional picture of the EBS circulation. The results show that the circulation within the continental shelf and slope region is strongly affected by the seasonal changes in the wind field and mesa/large-scale circulation. Transient processes associated to the passage of Cold Front systems or meso-scale activity and the presence of a local canyon add more complexity to the system. During the austral spring and summer seasons, the prevailing upwelling favorable winds blowing from E-NE were responsible for driving southwestward shelf currents. The interaction with the Western Boundary Current (the Brazil Current), especially during summer, was significant and a considerable vertical shear in the velocity field was observed at the outer shelf. The passage of a Cold Front system during the springtime caused a complete reversal of the mean flow and contributed to the deepening of the Mixed Layer Depth (MLD). In addition, the presence of Salvador Canyon, subject to an upwelling favorable boundary current, enhanced the upwelling system, when compared to the upwelling observed at the adjacent shelf. During the austral autumn and winter seasons the prevailing downwelling favorable winds blowing from the SE acted to total reverse the shelf circulation, resulting in a northeastward flow. The passage of a strong Cold Front, during the autumn season, contributed not only to the strengthening of the flow but also to the deepening of the MLD. The presence of the Salvador Canyon, when subject to a downwelling favorable boundary current, caused an intensification of the downwelling process. Interestingly, the alongshore velocity at the shelf region adjacent to the head of the canyon was less affected when compared to the upwelling situation.
Resumo:
The behavior of the average energy for an ensemble of non-interacting particles is studied using scaling arguments in a dissipative time-dependent stadium-like billiard. The dynamics of the system is described by a four dimensional nonlinear mapping. The dissipation is introduced via inelastic collisions between the particles and the moving boundary. For different combinations of initial velocities and damping coefficients, the long time dynamics of the particles leads them to reach different states of final energy and to visit different attractors, which change as the dissipation is varied. The decay of the average energy of the particles, which is observed for a large range of restitution coefficients and different initial velocities, is described using scaling arguments. Since this system exhibits unlimited energy growth in the absence of dissipation, our results for the dissipative case give support to the principle that Fermi acceleration seems not to be a robust phenomenon. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699465]
Resumo:
We analyze the turbulence driven particle transport in Texas Helimak [K. W. Gentle and H. He, Plasma Sci. Technol. 10, 284 (2008)], a toroidal plasma device with a one-dimensional equilibrium with magnetic curvature and shear. Alterations on the radial electric field, through an external voltage bias, change the spectral plasma characteristics inducing a dominant frequency for negative bias values and a broad band frequency spectrum for positive bias values. When applying a negative bias, the transport is high where the waves propagate with phase velocities near the plasma flow velocity, an indication that the transport is strongly affected by a wave particle resonant interaction. On the other hand, for positive bias values, the plasma has a reversed shear flow, and we observe that the transport is almost zero in the shearless radial region, an evidence of a transport barrier in this region. (c) 2012 American Institute of Physics. [doi:10.1063/1.3676607]
Resumo:
We analyze long-range time correlations and self-similar characteristics of the electrostatic turbulence at the plasma edge and scrape-off layer in the Tokamak Chauffage Alfven Bresillien (TCABR), with low and high Magnetohydrodynamics (MHD) activity. We find evidence of self-organized criticality (SOC), mainly in the region near the tokamak limiter. Comparative analyses of data before and during the MHD activity reveals that during the high mHD activity the Hurst parameter decreases. Finally, we present a cellular automaton whose parameters are adjusted to simulate the analyzed turbulence SOC change with the MHD activity variation. (C) 2011 Published by Elsevier B.V.
Resumo:
Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH- + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (S(N)2@C) or the nitrogen center (S(N)2@N) as well as a proton abstraction followed by dissociation (E(CO)2) pathway. Direct dynamics simulations yield an S(N)2:E(CO)2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH-. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion-molecule gas-phase reactions.
Resumo:
The rising of cold water from deeper levels characterizes coastal upwelling systems. This flow makes nutrients available in the euphotic layer, which enhances phytoplankton production and growth. On the Brazilian coast, upwelling is most intense in the Cabo Frio region (RJ). The basic knowledge of this system was reviewed in accordance with concepts of biophysical interactions. The high frequency and amplitude of the prevailing winds are the main factor promoting the rise of South Atlantic Central Water, but meanders and eddies in the Brazil Current as well as local topography and coast line are also important. Upwelling events are common during spring/summer seasons. Primary biomass is exported by virtue of the water circulation and is also controlled by rapid zooplankton predation. Small pelagic fish regulate plankton growth and in their turn are preyed on by predatory fish. Sardine furnishes an important regional fish stock. Shoreline irregularities define the embayment formation of the Marine Extractive Reserve of Arraial do Cabo making it an area with evident different intensities of upwelled water that harbors high species diversity. Consequently, on a small spatial scale there are environments with tropical and subtropical features, a point to be explored as a particularity of this ecosystem.
Resumo:
Although it is well known that the thyroid hormone (T3) is an important positive regulator of cardiac function over a short term and that it also promotes deleterious effects over a long term, the molecular mechanisms for such effects are not yet well understood. Because most alterations in cardiac function are associated with changes in sarcomeric machinery, the present work was undertaken to find novel sarcomeric hot spots driven by T3 in the heart. A microarray analysis indicated that the M-band is a major hot spot, and the structural sarcomeric gene coding for the M-protein is severely down-regulated by T3. Real-time quantitative PCR-based measurements confirmed that T3 (1, 5, 50, and 100 physiological doses for 2 days) sharply decreased the M-protein gene and protein expression in vivo in a dose-dependent manner. Furthermore, the M-protein gene expression was elevated 3.4-fold in hypothyroid rats. Accordingly, T3 was able to rapidly and strongly reduce the M-protein gene expression in neonatal cardiomyocytes. Deletions at the M-protein promoter and bioinformatics approach suggested an area responsive to T3, which was confirmed by chromatin immunoprecipitation assay. Functional assays in cultured neonatal cardiomyocytes revealed that depletion of M-protein (by small interfering RNA) drives a severe decrease in speed of contraction. Interestingly, mRNA and protein levels of other M-band components, myomesin and embryonic-heart myomesin, were not altered by T3. We concluded that the M-protein expression is strongly and rapidly repressed by T3 in cardiomyocytes, which represents an important aspect for the basis of T3-dependent sarcomeric deleterious effects in the heart.
Resumo:
With the increasing production of information from e-government initiatives, there is also the need to transform a large volume of unstructured data into useful information for society. All this information should be easily accessible and made available in a meaningful and effective way in order to achieve semantic interoperability in electronic government services, which is a challenge to be pursued by governments round the world. Our aim is to discuss the context of e-Government Big Data and to present a framework to promote semantic interoperability through automatic generation of ontologies from unstructured information found in the Internet. We propose the use of fuzzy mechanisms to deal with natural language terms and present some related works found in this area. The results achieved in this study are based on the architectural definition and major components and requirements in order to compose the proposed framework. With this, it is possible to take advantage of the large volume of information generated from e-Government initiatives and use it to benefit society.