984 resultados para UML (INFORMATICA)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordinating activities in a distributed system is an open research topic. Several models have been proposed to achieve this purpose such as message passing, publish/subscribe, workflows or tuple spaces. We have focused on the latter model, trying to overcome some of its disadvantages. In particular we have applied spatial database techniques to tuple spaces in order to increase their performance when handling a large number of tuples. Moreover, we have studied how structured peer to peer approaches can be applied to better distribute tuples on large networks. Using some of these result, we have developed a tuple space implementation for the Globus Toolkit that can be used by Grid applications as a coordination service. The development of such a service has been quite challenging due to the limitations imposed by XML serialization that have heavily influenced its design. Nevertheless, we were able to complete its implementation and use it to implement two different types of test applications: a completely parallelizable one and a plasma simulation that is not completely parallelizable. Using this last application we have compared the performance of our service against MPI. Finally, we have developed and tested a simple workflow in order to show the versatility of our service.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unlike traditional wireless networks, characterized by the presence of last-mile, static and reliable infrastructures, Mobile ad Hoc Networks (MANETs) are dynamically formed by collections of mobile and static terminals that exchange data by enabling each other's communication. Supporting multi-hop communication in a MANET is a challenging research area because it requires cooperation between different protocol layers (MAC, routing, transport). In particular, MAC and routing protocols could be considered mutually cooperative protocol layers. When a route is established, the exposed and hidden terminal problems at MAC layer may decrease the end-to-end performance proportionally with the length of each route. Conversely, the contention at MAC layer may cause a routing protocol to respond by initiating new routes queries and routing table updates. Multi-hop communication may also benefit the presence of pseudo-centralized virtual infrastructures obtained by grouping nodes into clusters. Clustering structures may facilitate the spatial reuse of resources by increasing the system capacity: at the same time, the clustering hierarchy may be used to coordinate transmissions events inside the network and to support intra-cluster routing schemes. Again, MAC and clustering protocols could be considered mutually cooperative protocol layers: the clustering scheme could support MAC layer coordination among nodes, by shifting the distributed MAC paradigm towards a pseudo-centralized MAC paradigm. On the other hand, the system benefits of the clustering scheme could be emphasized by the pseudo-centralized MAC layer with the support for differentiated access priorities and controlled contention. In this thesis, we propose cross-layer solutions involving joint design of MAC, clustering and routing protocols in MANETs. As main contribution, we study and analyze the integration of MAC and clustering schemes to support multi-hop communication in large-scale ad hoc networks. A novel clustering protocol, named Availability Clustering (AC), is defined under general nodes' heterogeneity assumptions in terms of connectivity, available energy and relative mobility. On this basis, we design and analyze a distributed and adaptive MAC protocol, named Differentiated Distributed Coordination Function (DDCF), whose focus is to implement adaptive access differentiation based on the node roles, which have been assigned by the upper-layer's clustering scheme. We extensively simulate the proposed clustering scheme by showing its effectiveness in dominating the network dynamics, under some stressing mobility models and different mobility rates. Based on these results, we propose a possible application of the cross-layer MAC+Clustering scheme to support the fast propagation of alert messages in a vehicular environment. At the same time, we investigate the integration of MAC and routing protocols in large scale multi-hop ad-hoc networks. A novel multipath routing scheme is proposed, by extending the AOMDV protocol with a novel load-balancing approach to concurrently distribute the traffic among the multiple paths. We also study the composition effect of a IEEE 802.11-based enhanced MAC forwarding mechanism called Fast Forward (FF), used to reduce the effects of self-contention among frames at the MAC layer. The protocol framework is modelled and extensively simulated for a large set of metrics and scenarios. For both the schemes, the simulation results reveal the benefits of the cross-layer MAC+routing and MAC+clustering approaches over single-layer solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last years, Intelligent Tutoring Systems have been a very successful way for improving learning experience. Many issues must be addressed until this technology can be defined mature. One of the main problems within the Intelligent Tutoring Systems is the process of contents authoring: knowledge acquisition and manipulation processes are difficult tasks because they require a specialised skills on computer programming and knowledge engineering. In this thesis we discuss a general framework for knowledge management in an Intelligent Tutoring System and propose a mechanism based on first order data mining to partially automate the process of knowledge acquisition that have to be used in the ITS during the tutoring process. Such a mechanism can be applied in Constraint Based Tutor and in the Pseudo-Cognitive Tutor. We design and implement a part of the proposed architecture, mainly the module of knowledge acquisition from examples based on first order data mining. We then show that the algorithm can be applied at least two different domains: first order algebra equation and some topics of C programming language. Finally we discuss the limitation of current approach and the possible improvements of the whole framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interactive theorem provers (ITP for short) are tools whose final aim is to certify proofs written by human beings. To reach that objective they have to fill the gap between the high level language used by humans for communicating and reasoning about mathematics and the lower level language that a machine is able to “understand” and process. The user perceives this gap in terms of missing features or inefficiencies. The developer tries to accommodate the user requests without increasing the already high complexity of these applications. We believe that satisfactory solutions can only come from a strong synergy between users and developers. We devoted most part of our PHD designing and developing the Matita interactive theorem prover. The software was born in the computer science department of the University of Bologna as the result of composing together all the technologies developed by the HELM team (to which we belong) for the MoWGLI project. The MoWGLI project aimed at giving accessibility through the web to the libraries of formalised mathematics of various interactive theorem provers, taking Coq as the main test case. The motivations for giving life to a new ITP are: • study the architecture of these tools, with the aim of understanding the source of their complexity • exploit such a knowledge to experiment new solutions that, for backward compatibility reasons, would be hard (if not impossible) to test on a widely used system like Coq. Matita is based on the Curry-Howard isomorphism, adopting the Calculus of Inductive Constructions (CIC) as its logical foundation. Proof objects are thus, at some extent, compatible with the ones produced with the Coq ITP, that is itself able to import and process the ones generated using Matita. Although the systems have a lot in common, they share no code at all, and even most of the algorithmic solutions are different. The thesis is composed of two parts where we respectively describe our experience as a user and a developer of interactive provers. In particular, the first part is based on two different formalisation experiences: • our internship in the Mathematical Components team (INRIA), that is formalising the finite group theory required to attack the Feit Thompson Theorem. To tackle this result, giving an effective classification of finite groups of odd order, the team adopts the SSReflect Coq extension, developed by Georges Gonthier for the proof of the four colours theorem. • our collaboration at the D.A.M.A. Project, whose goal is the formalisation of abstract measure theory in Matita leading to a constructive proof of Lebesgue’s Dominated Convergence Theorem. The most notable issues we faced, analysed in this part of the thesis, are the following: the difficulties arising when using “black box” automation in large formalisations; the impossibility for a user (especially a newcomer) to master the context of a library of already formalised results; the uncomfortable big step execution of proof commands historically adopted in ITPs; the difficult encoding of mathematical structures with a notion of inheritance in a type theory without subtyping like CIC. In the second part of the manuscript many of these issues will be analysed with the looking glasses of an ITP developer, describing the solutions we adopted in the implementation of Matita to solve these problems: integrated searching facilities to assist the user in handling large libraries of formalised results; a small step execution semantic for proof commands; a flexible implementation of coercive subtyping allowing multiple inheritance with shared substructures; automatic tactics, integrated with the searching facilities, that generates proof commands (and not only proof objects, usually kept hidden to the user) one of which specifically designed to be user driven.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Peer-to-Peer network paradigm is drawing the attention of both final users and researchers for its features. P2P networks shift from the classic client-server approach to a high level of decentralization where there is no central control and all the nodes should be able not only to require services, but to provide them to other peers as well. While on one hand such high level of decentralization might lead to interesting properties like scalability and fault tolerance, on the other hand it implies many new problems to deal with. A key feature of many P2P systems is openness, meaning that everybody is potentially able to join a network with no need for subscription or payment systems. The combination of openness and lack of central control makes it feasible for a user to free-ride, that is to increase its own benefit by using services without allocating resources to satisfy other peers’ requests. One of the main goals when designing a P2P system is therefore to achieve cooperation between users. Given the nature of P2P systems based on simple local interactions of many peers having partial knowledge of the whole system, an interesting way to achieve desired properties on a system scale might consist in obtaining them as emergent properties of the many interactions occurring at local node level. Two methods are typically used to face the problem of cooperation in P2P networks: 1) engineering emergent properties when designing the protocol; 2) study the system as a game and apply Game Theory techniques, especially to find Nash Equilibria in the game and to reach them making the system stable against possible deviant behaviors. In this work we present an evolutionary framework to enforce cooperative behaviour in P2P networks that is alternative to both the methods mentioned above. Our approach is based on an evolutionary algorithm inspired by computational sociology and evolutionary game theory, consisting in having each peer periodically trying to copy another peer which is performing better. The proposed algorithms, called SLAC and SLACER, draw inspiration from tag systems originated in computational sociology, the main idea behind the algorithm consists in having low performance nodes copying high performance ones. The algorithm is run locally by every node and leads to an evolution of the network both from the topology and from the nodes’ strategy point of view. Initial tests with a simple Prisoners’ Dilemma application show how SLAC is able to bring the network to a state of high cooperation independently from the initial network conditions. Interesting results are obtained when studying the effect of cheating nodes on SLAC algorithm. In fact in some cases selfish nodes rationally exploiting the system for their own benefit can actually improve system performance from the cooperation formation point of view. The final step is to apply our results to more realistic scenarios. We put our efforts in studying and improving the BitTorrent protocol. BitTorrent was chosen not only for its popularity but because it has many points in common with SLAC and SLACER algorithms, ranging from the game theoretical inspiration (tit-for-tat-like mechanism) to the swarms topology. We discovered fairness, meant as ratio between uploaded and downloaded data, to be a weakness of the original BitTorrent protocol and we drew inspiration from the knowledge of cooperation formation and maintenance mechanism derived from the development and analysis of SLAC and SLACER, to improve fairness and tackle freeriding and cheating in BitTorrent. We produced an extension of BitTorrent called BitFair that has been evaluated through simulation and has shown the abilities of enforcing fairness and tackling free-riding and cheating nodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reasoning under uncertainty is a human capacity that in software system is necessary and often hidden. Argumentation theory and logic make explicit non-monotonic information in order to enable automatic forms of reasoning under uncertainty. In human organization Distributed Cognition and Activity Theory explain how artifacts are fundamental in all cognitive process. Then, in this thesis we search to understand the use of cognitive artifacts in an new argumentation framework for an agent-based artificial society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Providing support for multimedia applications on low-power mobile devices remains a significant research challenge. This is primarily due to two reasons: • Portable mobile devices have modest sizes and weights, and therefore inadequate resources, low CPU processing power, reduced display capabilities, limited memory and battery lifetimes as compared to desktop and laptop systems. • On the other hand, multimedia applications tend to have distinctive QoS and processing requirementswhichmake themextremely resource-demanding. This innate conflict introduces key research challenges in the design of multimedia applications and device-level power optimization. Energy efficiency in this kind of platforms can be achieved only via a synergistic hardware and software approach. In fact, while System-on-Chips are more and more programmable thus providing functional flexibility, hardwareonly power reduction techniques cannot maintain consumption under acceptable bounds. It is well understood both in research and industry that system configuration andmanagement cannot be controlled efficiently only relying on low-level firmware and hardware drivers. In fact, at this level there is lack of information about user application activity and consequently about the impact of power management decision on QoS. Even though operating system support and integration is a requirement for effective performance and energy management, more effective and QoSsensitive power management is possible if power awareness and hardware configuration control strategies are tightly integratedwith domain-specificmiddleware services. The main objective of this PhD research has been the exploration and the integration of amiddleware-centric energymanagement with applications and operating-system. We choose to focus on the CPU-memory and the video subsystems, since they are the most power-hungry components of an embedded system. A second main objective has been the definition and implementation of software facilities (like toolkits, API, and run-time engines) in order to improve programmability and performance efficiency of such platforms. Enhancing energy efficiency and programmability ofmodernMulti-Processor System-on-Chips (MPSoCs) Consumer applications are characterized by tight time-to-market constraints and extreme cost sensitivity. The software that runs on modern embedded systems must be high performance, real time, and even more important low power. Although much progress has been made on these problems, much remains to be done. Multi-processor System-on-Chip (MPSoC) are increasingly popular platforms for high performance embedded applications. This leads to interesting challenges in software development since efficient software development is a major issue for MPSoc designers. An important step in deploying applications on multiprocessors is to allocate and schedule concurrent tasks to the processing and communication resources of the platform. The problem of allocating and scheduling precedenceconstrained tasks on processors in a distributed real-time system is NP-hard. There is a clear need for deployment technology that addresses thesemulti processing issues. This problem can be tackled by means of specific middleware which takes care of allocating and scheduling tasks on the different processing elements and which tries also to optimize the power consumption of the entire multiprocessor platform. This dissertation is an attempt to develop insight into efficient, flexible and optimalmethods for allocating and scheduling concurrent applications tomultiprocessor architectures. It is a well-known problem in literature: this kind of optimization problems are very complex even in much simplified variants, therefore most authors propose simplified models and heuristic approaches to solve it in reasonable time. Model simplification is often achieved by abstracting away platform implementation ”details”. As a result, optimization problems become more tractable, even reaching polynomial time complexity. Unfortunately, this approach creates an abstraction gap between the optimization model and the real HW-SW platform. The main issue with heuristic or, more in general, with incomplete search is that they introduce an optimality gap of unknown size. They provide very limited or no information on the distance between the best computed solution and the optimal one. The goal of this work is to address both abstraction and optimality gaps, formulating accurate models which accounts for a number of ”non-idealities” in real-life hardware platforms, developing novel mapping algorithms that deterministically find optimal solutions, and implementing software infrastructures required by developers to deploy applications for the targetMPSoC platforms. Energy Efficient LCDBacklightAutoregulation on Real-LifeMultimediaAp- plication Processor Despite the ever increasing advances in Liquid Crystal Display’s (LCD) technology, their power consumption is still one of the major limitations to the battery life of mobile appliances such as smart phones, portable media players, gaming and navigation devices. There is a clear trend towards the increase of LCD size to exploit the multimedia capabilities of portable devices that can receive and render high definition video and pictures. Multimedia applications running on these devices require LCD screen sizes of 2.2 to 3.5 inches andmore to display video sequences and pictures with the required quality. LCD power consumption is dependent on the backlight and pixel matrix driving circuits and is typically proportional to the panel area. As a result, the contribution is also likely to be considerable in future mobile appliances. To address this issue, companies are proposing low power technologies suitable for mobile applications supporting low power states and image control techniques. On the research side, several power saving schemes and algorithms can be found in literature. Some of them exploit software-only techniques to change the image content to reduce the power associated with the crystal polarization, some others are aimed at decreasing the backlight level while compensating the luminance reduction by compensating the user perceived quality degradation using pixel-by-pixel image processing algorithms. The major limitation of these techniques is that they rely on the CPU to perform pixel-based manipulations and their impact on CPU utilization and power consumption has not been assessed. This PhDdissertation shows an alternative approach that exploits in a smart and efficient way the hardware image processing unit almost integrated in every current multimedia application processors to implement a hardware assisted image compensation that allows dynamic scaling of the backlight with a negligible impact on QoS. The proposed approach overcomes CPU-intensive techniques by saving system power without requiring either a dedicated display technology or hardware modification. Thesis Overview The remainder of the thesis is organized as follows. The first part is focused on enhancing energy efficiency and programmability of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives an overview about architectural trends in embedded systems, illustrating the principal features of new technologies and the key challenges still open. Chapter 3 presents a QoS-driven methodology for optimal allocation and frequency selection for MPSoCs. The methodology is based on functional simulation and full system power estimation. Chapter 4 targets allocation and scheduling of pipelined stream-oriented applications on top of distributed memory architectures with messaging support. We tackled the complexity of the problem by means of decomposition and no-good generation, and prove the increased computational efficiency of this approach with respect to traditional ones. Chapter 5 presents a cooperative framework to solve the allocation, scheduling and voltage/frequency selection problem to optimality for energyefficient MPSoCs, while in Chapter 6 applications with conditional task graph are taken into account. Finally Chapter 7 proposes a complete framework, called Cellflow, to help programmers in efficient software implementation on a real architecture, the Cell Broadband Engine processor. The second part is focused on energy efficient software techniques for LCD displays. Chapter 8 gives an overview about portable device display technologies, illustrating the principal features of LCD video systems and the key challenges still open. Chapter 9 shows several energy efficient software techniques present in literature, while Chapter 10 illustrates in details our method for saving significant power in an LCD panel. Finally, conclusions are drawn, reporting the main research contributions that have been discussed throughout this dissertation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioinformatics is a recent and emerging discipline which aims at studying biological problems through computational approaches. Most branches of bioinformatics such as Genomics, Proteomics and Molecular Dynamics are particularly computationally intensive, requiring huge amount of computational resources for running algorithms of everincreasing complexity over data of everincreasing size. In the search for computational power, the EGEE Grid platform, world's largest community of interconnected clusters load balanced as a whole, seems particularly promising and is considered the new hope for satisfying the everincreasing computational requirements of bioinformatics, as well as physics and other computational sciences. The EGEE platform, however, is rather new and not yet free of problems. In addition, specific requirements of bioinformatics need to be addressed in order to use this new platform effectively for bioinformatics tasks. In my three years' Ph.D. work I addressed numerous aspects of this Grid platform, with particular attention to those needed by the bioinformatics domain. I hence created three major frameworks, Vnas, GridDBManager and SETest, plus an additional smaller standalone solution, to enhance the support for bioinformatics applications in the Grid environment and to reduce the effort needed to create new applications, additionally addressing numerous existing Grid issues and performing a series of optimizations. The Vnas framework is an advanced system for the submission and monitoring of Grid jobs that provides an abstraction with reliability over the Grid platform. In addition, Vnas greatly simplifies the development of new Grid applications by providing a callback system to simplify the creation of arbitrarily complex multistage computational pipelines and provides an abstracted virtual sandbox which bypasses Grid limitations. Vnas also reduces the usage of Grid bandwidth and storage resources by transparently detecting equality of virtual sandbox files based on content, across different submissions, even when performed by different users. BGBlast, evolution of the earlier project GridBlast, now provides a Grid Database Manager (GridDBManager) component for managing and automatically updating biological flatfile databases in the Grid environment. GridDBManager sports very novel features such as an adaptive replication algorithm that constantly optimizes the number of replicas of the managed databases in the Grid environment, balancing between response times (performances) and storage costs according to a programmed cost formula. GridDBManager also provides a very optimized automated management for older versions of the databases based on reverse delta files, which reduces the storage costs required to keep such older versions available in the Grid environment by two orders of magnitude. The SETest framework provides a way to the user to test and regressiontest Python applications completely scattered with side effects (this is a common case with Grid computational pipelines), which could not easily be tested using the more standard methods of unit testing or test cases. The technique is based on a new concept of datasets containing invocations and results of filtered calls. The framework hence significantly accelerates the development of new applications and computational pipelines for the Grid environment, and the efforts required for maintenance. An analysis of the impact of these solutions will be provided in this thesis. This Ph.D. work originated various publications in journals and conference proceedings as reported in the Appendix. Also, I orally presented my work at numerous international conferences related to Grid and bioinformatics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The full exploitation of multi-hop multi-path connectivity opportunities offered by heterogeneous wireless interfaces could enable innovative Always Best Served (ABS) deployment scenarios where mobile clients dynamically self-organize to offer/exploit Internet connectivity at best. Only novel middleware solutions based on heterogeneous context information can seamlessly enable this scenario: middleware solutions should i) provide a translucent access to low-level components, to achieve both fully aware and simplified pre-configured interactions, ii) permit to fully exploit communication interface capabilities, i.e., not only getting but also providing connectivity in a peer-to-peer fashion, thus relieving final users and application developers from the burden of directly managing wireless interface heterogeneity, and iii) consider user mobility as crucial context information evaluating at provision time the suitability of available Internet points of access differently when the mobile client is still or in motion. The novelty of this research work resides in three primary points. First of all, it proposes a novel model and taxonomy providing a common vocabulary to easily describe and position solutions in the area of context-aware autonomic management of preferred network opportunities. Secondly, it presents PoSIM, a context-aware middleware for the synergic exploitation and control of heterogeneous positioning systems that facilitates the development and portability of location-based services. PoSIM is translucent, i.e., it can provide application developers with differentiated visibility of data characteristics and control possibilities of available positioning solutions, thus dynamically adapting to application-specific deployment requirements and enabling cross-layer management decisions. Finally, it provides the MMHC solution for the self-organization of multi-hop multi-path heterogeneous connectivity. MMHC considers a limited set of practical indicators on node mobility and wireless network characteristics for a coarsegrained estimation of expected reliability/quality of multi-hop paths available at runtime. In particular, MMHC manages the durability/throughput-aware formation and selection of different multi-hop paths simultaneously. Furthermore, MMHC provides a novel solution based on adaptive buffers, proactively managed based on handover prediction, to support continuous services, especially by pre-fetching multimedia contents to avoid streaming interruptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-organisation is increasingly being regarded as an effective approach to tackle modern systems complexity. The self-organisation approach allows the development of systems exhibiting complex dynamics and adapting to environmental perturbations without requiring a complete knowledge of the future surrounding conditions. However, the development of self-organising systems (SOS) is driven by different principles with respect to traditional software engineering. For instance, engineers typically design systems combining smaller elements where the composition rules depend on the reference paradigm, but typically produce predictable results. Conversely, SOS display non-linear dynamics, which can hardly be captured by deterministic models, and, although robust with respect to external perturbations, are quite sensitive to changes on inner working parameters. In this thesis, we describe methodological aspects concerning the early-design stage of SOS built relying on the Multiagent paradigm: in particular, we refer to the A&A metamodel, where MAS are composed by agents and artefacts, i.e. environmental resources. Then, we describe an architectural pattern that has been extracted from a recurrent solution in designing self-organising systems: this pattern is based on a MAS environment formed by artefacts, modelling non-proactive resources, and environmental agents acting on artefacts so as to enable self-organising mechanisms. In this context, we propose a scientific approach for the early design stage of the engineering of self-organising systems: the process is an iterative one and each cycle is articulated in four stages, modelling, simulation, formal verification, and tuning. During the modelling phase we mainly rely on the existence of a self-organising strategy observed in Nature and, hopefully encoded as a design pattern. Simulations of an abstract system model are used to drive design choices until the required quality properties are obtained, thus providing guarantees that the subsequent design steps would lead to a correct implementation. However, system analysis exclusively based on simulation results does not provide sound guarantees for the engineering of complex systems: to this purpose, we envision the application of formal verification techniques, specifically model checking, in order to exactly characterise the system behaviours. During the tuning stage parameters are tweaked in order to meet the target global dynamics and feasibility constraints. In order to evaluate the methodology, we analysed several systems: in this thesis, we only describe three of them, i.e. the most representative ones for each of the three years of PhD course. We analyse each case study using the presented method, and describe the exploited formal tools and techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large scale wireless adhoc networks of computers, sensors, PDAs etc. (i.e. nodes) are revolutionizing connectivity and leading to a paradigm shift from centralized systems to highly distributed and dynamic environments. An example of adhoc networks are sensor networks, which are usually composed by small units able to sense and transmit to a sink elementary data which are successively processed by an external machine. Recent improvements in the memory and computational power of sensors, together with the reduction of energy consumptions, are rapidly changing the potential of such systems, moving the attention towards datacentric sensor networks. A plethora of routing and data management algorithms have been proposed for the network path discovery ranging from broadcasting/floodingbased approaches to those using global positioning systems (GPS). We studied WGrid, a novel decentralized infrastructure that organizes wireless devices in an adhoc manner, where each node has one or more virtual coordinates through which both message routing and data management occur without reliance on either flooding/broadcasting operations or GPS. The resulting adhoc network does not suffer from the deadend problem, which happens in geographicbased routing when a node is unable to locate a neighbor closer to the destination than itself. WGrid allow multidimensional data management capability since nodes' virtual coordinates can act as a distributed database without needing neither special implementation or reorganization. Any kind of data (both single and multidimensional) can be distributed, stored and managed. We will show how a location service can be easily implemented so that any search is reduced to a simple query, like for any other data type. WGrid has then been extended by adopting a replication methodology. We called the resulting algorithm WRGrid. Just like WGrid, WRGrid acts as a distributed database without needing neither special implementation nor reorganization and any kind of data can be distributed, stored and managed. We have evaluated the benefits of replication on data management, finding out, from experimental results, that it can halve the average number of hops in the network. The direct consequence of this fact are a significant improvement on energy consumption and a workload balancing among sensors (number of messages routed by each node). Finally, thanks to the replications, whose number can be arbitrarily chosen, the resulting sensor network can face sensors disconnections/connections, due to failures of sensors, without data loss. Another extension to {WGrid} is {W*Grid} which extends it by strongly improving network recovery performance from link and/or device failures that may happen due to crashes or battery exhaustion of devices or to temporary obstacles. W*Grid guarantees, by construction, at least two disjoint paths between each couple of nodes. This implies that the recovery in W*Grid occurs without broadcasting transmissions and guaranteeing robustness while drastically reducing the energy consumption. An extensive number of simulations shows the efficiency, robustness and traffic road of resulting networks under several scenarios of device density and of number of coordinates. Performance analysis have been compared to existent algorithms in order to validate the results.