980 resultados para Tyrosine recombinase
Resumo:
We show here that the neurotrophin nerve growth factor (NGF), which has been shown to be a mitogen for breast cancer cells, also stimulates cell survival through a distinct signaling pathway. Breast cancer cell lines (MCF-7, T47-D, BT-20, and MDA-MB-231) were found to express both types of NGF receptors: p140(trkA) and p75(NTR). The two other tyrosine kinase receptors for neurotrophins, TrkB and TrkC, were not expressed. The mitogenic effect of NGF on breast cancer cells required the tyrosine kinase activity of p140(trkA) as well as the mitogen-activated protein kinase (MAPK) cascade, but was independent of p75(NTR). I, contrast, the anti-apoptotic effect of NGF (studied using the ceramide analogue C2) required p75(NTR) as well as the activation of the transcription factor NF-kB, but neither p140(trkA) nor MAPK was necessary. Other neurotrophins (BDNF, NT-3, NT-4/5) also induced cell survival, although not proliferation, emphasizing the importance of p75(NTR) in NGF-mediated survival. Both the pharmacological NF-KB inhibitor SN50, and cell transfection with IkBm, resulted in a diminution of NGF anti-apoptotic effect. These data show that two distinct signaling pathways are required for NGF activity and confirm the roles played by p75(NTR) and NF-kappaB in the activation of the survival pathway in breast cancer cells.
Resumo:
The effects of five neuropeptides (CGRP, SOM, SP, NPY, VIP), L-NAME (nitric oxide synthase inhibitor), and adrenaline on the contractile tone of the aortic anastomosis in the estuarine crocodile, Crocodylus porosus, were investigated. None of the neuropeptides, which had previously been found to be present in the aortic anastomosis, had any direct effect on the tension developed by ring preparations. L-NAME itself significantly increased the basal tone of the vascular ring preparations, suggesting a tonic release of nitric oxide in the preparation. Adrenaline produced concentration-dependent vasoconstrictions that were counteracted by profound reflex vasodilatations that were susceptible to blockade by L-NAME. Immunohistochemistry revealed the presence of nitric oxide synthase and tyrosine hydroxylase-containing (indicating the presence of a adrenergic innervation) nerve fibres in the adventitia and adventitio-medial border of the aortic anastomosis. These data demonstrate opposing actions of adrenaline and nitric oxide on the vascular smooth muscle in the anastomosis of the C. porosus. The morphology of the anastomosis, with the extremely thick muscular vessel wall, suggests a sphincter-like function for this vessel that could be controlled mainly by adrenergic and nitrergic mechanisms, (C) 2001 Academic Press.
Resumo:
HLA-A*0201 transgenic, H-2D(b)/mouse beta2-microglobulin double-knockout mice were used to compare and optimize the immunogenic potential of 17HIV 1-derived, HLA-A0201-restricted epitopic peptides. A tyrosine substitution in position 1 of the epitopic peptides, which increases both their affinity for and their HLA-A0201 molecule stabilizing capacity, was introduced in a significant proportion, having verified that such modifications enhance their immunogenicity in respect of their natural antigenicity. Based on these results, a 13-polyepitope construct was inserted in the pre-S2 segment of the hepatitis B middle glycoprotein and used for DNA immunization. Long-lasting CTL responses against most of the inserted epitopes could be elicited simultaneously in a single animal with cross-recognition in several cases of their most common natural variants.
Resumo:
The cyclic C5a receptor antagonist, phenylalanine [L-ornithine-proline-D-cyclohexylalanine-tryptophan-arginine] (F-[OPchaWR]), has similar to 1000-fold less affinity for the C5a receptor (C5aR) on murine polymorphonuclear leukocytes than on human. Analysis of C5aR from different species shows that a possible cause of this difference is the variation in the sequence of the first extracellular loop of the receptor. The mouse receptor contains Y at a position analogous to P-103 in the human receptor, and D at G(105). To test this hypothesis, we expressed human C5aR mutants ((PY)-Y-103, G(105)D and the double mutant, (PY)-Y-103/G(105)D) in RBL-2H3 cells and investigated the effects of these mutations on binding affinity and receptor activation. All three mutant receptors had a higher affinity for human C5a than the wild-type receptor, but showed no significant difference in the ability of F-[OPchaWR] to inhibit human C5a binding. However, all of the mutant receptors had substantially lower affinities for the weak agonist, C5a des Arg(74) (C5adR(74)), and two altered receptors (G(105)D and (PY)-Y-103/G(105)D) had much lower affinities for the C-terminal C5a agonist peptide analogue, L-tyrosine-serine-phenylalanine-lysine-proline-methionine-proline-leucine-D-alanine-arginine (YSFKPMPLaR). Although it is unlikely that differences at these residues are responsible for variations in the potency of F-[OPchaWR] across species, residues in the first extracellular loop are clearly involved in the recognition of both C5a and C5a agonists. The complex effects of mutating these residues on the affinity and response to C5a, C5adR(74), and the peptide analogues provide evidence of different binding modes for these ligands on the C5aR. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
E-cadherin is a major adherens junction protein of epithelial cells, with a central role in cell-cell adhesion and cell polarity. Newly synthesized E-cadherin is targeted to the basolateral cell surface, We analyzed targeting information in the cytoplasmic tail of E-cadherin by utilizing chimeras of E-cadherin fused to the ectodo- main of the interleukin-2 alpha (IL-2 alpha) receptor expressed in Madin-Darby canine kidney and LLC-PK1 epithelial cells, Chimeras containing the full-length or membrane-proximal half of the E-cadherin cytoplasmic tail were correctly targeted to the basolateral domain. Sequence analysis of the membrane-proximal tail region revealed the presence of a highly conserved dileucine motif, which was analyzed as a putative targeting signal by mutagenesis. Elimination of this motif resulted in the loss of Tac/E-cadherin basolateral localization, pinpointing this dileucine signal as being both necessary and sufficient for basolateral targeting of E-cadherin, Truncation mutants unable to bind beta -catenin were correctly targeted, showing, contrary to current understanding, that beta -catenin is not required for basolateral trafficking. Our results also provide evidence that dileucine mediated targeting is maintained in UC-PK, cells despite the altered polarity of basolateral proteins with tyrosine-based signals in this cell line, These results provide the first direct insights into how E-cadherin is targeted to the basolateral membrane.
Resumo:
Epithelial locomotility is a fundamental determinant of tissue patterning that is subject to strict physiological regulation. The current, study sought to identify cellular signals that initiate cell migration in cultured thyroid epithelial cells. Porcine thyroid cells cultured as 3-dimensional follicles convert to 2-dimensional monolayers when deprived of agents that stimulate cAMP/PKA signaling. This morphogenetic event is driven by the activation of cell-on-substrate locomotility, providing a convenient assay for events that regulate the initiation of locomotion. In this system, the extracellular signal regulated kinase (ERK) pathway became activated as follicles converted to monolayer, as demonstrated by immunoblotting for activation-specific phosphorylation and nuclear accumulation of ERK. Inhibition of ERK activation using the drug PD98059 effectively prevented cells from beginning to migrate. PD98059 inhibited cell spreading, actin filament reorganization and the assembly of focal adhesions, cellular events that mediate the initiation of thyroid cell locomotility. Akt (PKB) signaling was also activated during follicle-to-monolayer conversion and the phosphoinositide 3-kinase (PI3-kinase) inhibitor, wortmannin, also blocked the initiation of cell movement. Wortmannin did not, however, block activation of ERK signaling. These findings, therefore, identify the ERK and PI3-kinase signaling pathways as important stimulators of thyroid cell locomotility. These findings are incorporated into a model where the initiation of thyroid cell motility constitutes a morphogenetic checkpoint regulated by coordinated changes in stimulatory (ERK, PI3-kinase) and tonic inhibitory (cAMP/PKA) signaling pathways. Cell Motil. Cytoskeleton 49:93-103, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
The EphA4 receptor tyrosine kinase regulates the formation of the corticospinal tract (CST), a pathway controlling voluntary movements, and of the anterior commissure (AC), connecting the neocortical temporal robes. To study EphA4 kinase signaling in these processes, we generated mice expressing mutant EphA4 receptors either lacking kinase activity or with severely downregulated kinase activity. We demonstrate that EphA4 is required for CST formation as a receptor for which it requires an active kinase domain. In contrast, the formation of the AC is rescued by kinase-dead EphA4, suggesting that in this structure EphA4 acts as a ligand for which its kinase activity is not required. Unexpectedly, the cytoplasmic sterile-alpha motif (SAM) domain is not required for EphA4 functions. Our findings establish both kinase-dependent and kinase-independent functions of EphA4 in the formation of major axon tracts.
Resumo:
The Eph family of receptor tyrosine kinases and their ligands, the ephrins, are important regulators of axon guidance and cell migration in the developing nervous system. Inactivation of the EphA4 gene results in axon guidance defects of the corticospinal tract, a major descending motor pathway that originates in the cortex and terminates at all levels of the spinal cord. In this investigation, we report that although the initial development of the corticospinal projection is normal through the cortex, internal capsule, cerebral peduncle, and medulla in the brain of EphA4 deficient animals, corticospinal axons exhibit gross abnormalities when they enter the gray matter of the spinal cord. Notably, many corticospinal axons fail to remain confined to one side of the spinal cord during development and instead, aberrantly project across the midline, terminating ipsilateral to their cells of origin. Given the possible repulsive interactions between EphA4 and one of its ligands, ephrinB3, this defect could be consistent with a loss of responsiveness by corticospinal axons to ephrinB3 that is expressed at the spinal cord midline. Furthermore, we show that EphA4 deficient animals exhibit ventral displacement of the mature corticospinal termination pattern, suggesting that developing corticospinal axons, which may also express ephrinB3, fail to be repelled from areas of high EphA4 expression in the intermediate zone of the normal spinal cord. Taken together, these results suggest that the dual expression of EphA4 on corticospinal axons and also within the surrounding gray matter is very important for the correct development and termination of the corticospinal projection within the spinal cord. J. Comp. Neurol. 436: 248-262, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
The Eph and ephrin system, consisting of fourteen Eph receptor tyrosine kinase proteins and nine ephrin membrane proteins in vertebrates, has been implicated in the regulation of many critical events during development. Binding of cell surface Eph and ephrin proteins results in bi-directional signals, which regulate the cytoskeletal, adhesive and motile properties of the interacting cells. Through these signals Eph and ephrin proteins are involved in early embryonic cell movements, which establish the germ layers, cell movements involved in formation of tissue boundaries and the pathfinding of axons. This review focuses on two vertebrate models, the zebrafish and mouse, in which experimental perturbation of Eph and/or ephrin expression in vivo have provided important insights into the role and functioning of the Eph/ephrin system.
Resumo:
Secreted anterior adhesives, used for temporary attachment to epithelial surfaces of fishes (skin and gills) by some monogenean (platyhelminth) parasites have been partially characterised. Adhesive is composed of protein. Amino acid composition has been determined for seven monopisthocotylean monogeneans. Six of these belong to the Monocotylidae and one species, Entobdella soleae (van Beneden et Hesse, 1864) Johnston, 1929, is a member of the Capsalidae. Histochemistry shows that the adhesive does not contain polysaccharides, including acid mucins, or lipids. The adhesive before secretion and in its secreted form contains no dihydroxyphenylalanine (dopa). Secreted adhesive is highly insoluble, but has a soft consistency and is mechanically removable from glass surfaces. Generally there are high levels of glycine and alanine, low levels of tyrosine and methionine, and histidine is often absent. However, amino acid content varies between species, the biggest differences evident when the monocotylid monogeneans were compared with E. soleae. Monogenean adhesive shows similarity in amino acid profile with adhesives from starfish, limpets and barnacles. However, there are some differences in individual amino acids in the temporary adhesive secretions of, on the one hand, the monogeneans and, on the other hand, the starfish and limpets. These differences may reflect the fact that monogeneans, unlike starfish and barnacles, attach to living tissue (tissue adhesion). A method of extracting unsecreted adhesive was investigated for use in further characterisation studies on monogenean glues.
Resumo:
The spatiotemporal expression patterns of the chemorepulsive EphA receptors, EphA4 and EphA7, and three ephrins-A2, A4 and A5, were examined in the developing rat primary olfactory system. Unlike the visual system that has simple and stable gradients of Ephs and ephrins, the olfactory system demonstrates complex spatiotemporal expression patterns of these molecules. Using immunohistochemistry, we demonstrate that expression of these molecules is dynamic and tightly regulated both within and between different cell types. We reveal restricted targeting of these proteins within subcellular compartments of some neurons. EphA4, ephrin-A2 and ephrin-A5 were expressed by primary olfactory axons during the embryonic formation of the olfactory nerve. There were no gradients in expression along the rostrocaudal or ventrodorsal axes in the nasal cavity and olfactory bulb. However, during the early neonatal period, axons expressing different levels of ephrin-A5 sorted out and terminated in a subpopulation of glomeruli that were mosaically dispersed throughout the bulb. The expression of EphA4 and ephrin-A2 was dramatically down-regulated on all axons during the early neonatal period of glomerular formation. The uniform co-expression of receptors and ligands before glomerular formation suggests they play a generic role in axon-axon interactions in the olfactory nerve and nerve fibre layer. In contrast, loss of EphA4 from axons during glomerular formation may facilitate the interaction of ephrin-A5 with Eph receptors on target cells in the bulb. While EphA4, EphA5 and EphA7 are not mosaically expressed by bulbar neurons, other Eph receptors may have expression patterns complementary to the ephrin-A5-positive subpopulation of glomeruli. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Background/Aims: Concordance of iron indices between same sex siblings homozygous for the cysteine-to-tyrosine substitution at amino acid 282 (C282Y) mutation suggests that the variable phenotype in hereditary hemochromatosis is caused by genetic factors. Concordance of iron indices between same-sex heterozygous sibling pairs would provide further evidence of genetic modifiers of disease expression, and guidance for family screening strategies of subjects heterozygous for the C282Y mutation. Methods: We compared the iron indices of 35 C282Y homozygous and 35 C282Y heterozygous same-sex sibling pairs. To clarify whether concordance between siblings was due to environmental or genetic factors we compared the iron indices of 164 C282Y homozygous-normal, same-sex dizygotic twins. Results: Serum ferritin (r = 0.50, P = 0.003), hepatic iron concentration (r = 0.61, P = 0.025) and hepatic iron index (r = 0.67, P = 0.01) were highly concordant in C282Y homozygotes. Heterozygote siblings were concordant for serum ferritin (r = 0.76, P = 0.0001) and transferrin saturation (r = 0.79, P = 0.0001). Homozygote-normal same-sex dizygotic twins were concordant for serum ferritin (r = 0.62, P = 0.0001) but not for transferrin saturation. Conclusions: Concordance of iron indices exists in C282Y homozygote and heterozygote sibling pairs. Siblings of expressing C282Y heterozygotes require phenotypic assessment. These data provide evidence for modifying genes influencing disease expression in hemochromatosis. (C) 2002 European Association for the Study of the Liver. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The MUC1 mucin (CD227) is a cell surface mucin originally thought to be restricted to epithelial tissues. We report that CD227 is expressed on human blood dendritic cells (DC) and monocyte-derived DC following in vitro activation. Freshly isolated murine splenic DC had very low levels of CD227; however, all DC expressed CD227 following in vitro culture. In the mouse spleen, CD227 was seen on clusters within the red pulp and surrounding the marginal zone in the white pulp. Additionally, we confirm CD227 expression by activated human T cells and show for the first time that the CD227 cytoplasmic domain is tyrosine-phosphorylated in activated T cells and DC and is associated with other phosphoproteins, indicating a role in signaling. The function of CD227 on DC and T cells requires further elucidation.
Resumo:
Eph receptor tyrosine kinases and ephrins regulate morphogenesis in the developing embryo where they effect adhesion and motility of interacting cells. Although scarcely expressed in adult tissues, Eph receptors and ephrins are overexpressed in a range of tumours. In malignant melanoma, increased Eph and ephrin expression levels correlate with metastatic progression. We have examined cellular and biochemical responses of EphA3-expressing melanoma cell lines and human epithelial kidney 293T cells to stimulation with polymeric ephrin-A5 in solution and with surfaces of defined ephrin-A5 densities. Within minutes, rapid reorganisation of the actin and myosin cytoskeleton occurs through activation of RhoA, leading to the retraction of cellular protrusions, membrane blebbing and detachment, but not apoptosis. These responses are inhibited by monomeric ephrin-A5, showing that receptor clustering is required for this EphA3 response. Furthermore, the adapter CrkII, which associates with tyrosine-phosphorylated EphA3 in vitro, is recruited in vivo to ephrin-A5-stimulated EphA3. Expression of an SH3-domain mutated CrkII ablates cell rounding, blebbing and detachment. Our results suggest that recruitment of CrkII and activation of Rho signalling are responsible for EphA3-mediated cell rounding, blebbing and de-adhesion, and that ephrin-A5-mediated receptor clustering and EphA3 tyrosine kinase activity are essential for this response.
Resumo:
PRL and placental lactogen (PL) play key roles in maintaining the rodent corpus luteum through pregnancy. Suppressors of cytokine signaling (SOCS) have been shown to decrease cell sensitivity to cytokines, including PRL, and so here we have addressed the issue of whether luteolysis induced by prostaglandin F-2alpha (PGF(2alpha)) might up-regulate SOCS proteins to inhibit PRL signaling. In d 19 pregnant rats, cloprostenol, a PGF(2alpha) analog, rapidly induced transcripts for SOCS-3 and, to a lesser extent, SOCS-1. We also found increased SOCS-3 protein in the ovary by immunoblot and in the corpus luteum by immunohistochemistry. Increased SOCS-3 expression was preceded by an increase in STAT3 tyrosine phosphorylation 10 min after cloprostenol injection and was maintained for 4 h, as determined by gel shift and immunohistochemistry. Induction of SOCS-3 was accompanied by a sharp decrease in active STAT5, as determined by gel-shift assay and by loss of nuclear localized STAT5. Four hours after cloprostenol administration, the corpus luteum was refractory to stimulation of STAT5 by PRL administration, and this was not due to down-regulation of PRL receptor. Therefore, induction of SOCS-3 by PGF(2alpha) may be an important element in the initiation of luteolysis via rapid suppression of luteotropic support from PL.