952 resultados para Two dimensional disordered alloys
Resumo:
We theoretically investigate light propagation and Anderson localization in one-dimensional disordered superlattices composed of dielectric stacks with graphene sheets in between. Disorder is introduced either on graphene material parameters ({\it e.g.} Fermi energy) or on the widths of the dielectric stacks. We derive an analytic expression for the localization length $\xi$, and compare it to numerical simulations using transfer matrix technique; a very good agreement is found. We demonstrate that the presence of graphene may strongly attenuate the anomalously delocalised Breswter modes, and is at the origin of a periodic dependence of $\xi$ on frequency, in contrast to the usual asymptotic decay, $\xi \propto \omega^{-2}$. By unveiling the effects of graphene on Anderson localization of light, we pave the way for new applications of graphene-based, disordered photonic devices in the THz spectral range.
Resumo:
OBJECTIVE: To evaluate echocardiography accuracy in performing and obtaining images for dynamical three-dimensional (3D) reconstruction. METHODS: Three-dimensional (3D) image reconstruction was obtained in 20 consecutive patients who underwent transesophageal echocardiography. A multiplanar 5 MHz transducer was used for 3D reconstruction. RESULTS: Twenty patients were studied consecutively. The following cardiac diseases were present: valvar prostheses-6 (2 mitral, 2 aortic and 2 mitral and aortic); mitral valve prolapse- 3; mitral and aortic disease - 2; aortic valve disease- 5; congenital heart disease- 3 (2 atrial septal defect- ASD - and 1 transposition of the great arteries -TGA); arteriovenous fistula- 1. In 7 patients, color Doppler was also obtained and used for 3D flow reconstruction. Twenty five cardiac structures were acquired and 60 reconstructions generated (28 of mitral valves, 14 of aortic valves, 4 of mitral prostheses, 7 of aortic prostheses and 7 of the ASD). Fifty five of 60 (91.6%) reconstructions were considered of good quality by 2 independent observers. The 11 reconstructed mitral valves/prostheses and the 2 reconstructed ASDs provided more anatomical information than two dimensional echocardiography (2DE) alone. CONCLUSION: 3D echocardiography using a transesophageal transducer is a feasible technique, which improves detection of anatomical details of cardiac structures, particularly of the mitral valve and atrial septum.
Resumo:
Background: Heart failure is a severe complication associated with doxorubicin (DOX) use. Strain, assessed by two-dimensional speckle tracking (2D-STE), has been shown to be useful in identifying subclinical ventricular dysfunction. Objectives: a) To investigate the role of strain in the identification of subclinical ventricular dysfunction in patients who used DOX; b) to investigate determinants of strain response in these patients. Methods: Cross-sectional study with 81 participants: 40 patients who used DOX ±2 years before the study and 41 controls. All participants had left ventricular ejection fraction (LVEF) ≥55%. Total dose of DOX was 396mg (242mg/ms2). The systolic function of the LV was evaluated by LVEF (Simpson), as well as by longitudinal (εLL), circumferential (εCC), and radial (εRR) strains. Multivariate linear regression (MLR) analysis was performed using εLL (model 1) and εCC (model 2) as dependent variables. Results: Systolic and diastolic blood pressure values were higher in the control group (p < 0.05). εLL was lower in the DOX group (-12.4 ±2.6%) versus controls (-13.4 ± 1.7%; p = 0.044). The same occurred with εCC: -12.1 ± 2.7% (DOX) versus -16.7 ± 3.6% (controls; p < 0.001). The S’ wave was shorter in the DOX group (p = 0.035). On MLR, DOX was an independent predictor of reduced εCC (B = -4.429, p < 0.001). DOX (B = -1.289, p = 0.012) and age (B = -0.057, p = 0.029) were independent markers of reduced εLL. Conclusion: a) εLL, εCC and the S’ wave are reduced in patients who used DOX ±2 years prior to the study despite normal LVEF, suggesting the presence of subclinical ventricular dysfunction; b) DOX was an independent predictor of reduced εCC; c) prior use of DOX and age were independent markers of reduced εLL.
Resumo:
This paper examines competition in a spatial model of two-candidate elections, where one candidate enjoys a quality advantage over the other candidate. The candidates care about winning and also have policy preferences. There is two-dimensional private information. Candidate ideal points as well as their tradeoffs between policy preferences and winning are private information. The distribution of this two-dimensional type is common knowledge. The location of the median voter's ideal point is uncertain, with a distribution that is commonly known by both candidates. Pure strategy equilibria always exist in this model. We characterize the effects of increased uncertainty about the median voter, the effect of candidate policy preferences, and the effects of changes in the distribution of private information. We prove that the distribution of candidate policies approaches the mixed equilibrium of Aragones and Palfrey (2002a), when both candidates' weights on policy preferences go to zero.
Resumo:
PURPOSE: To introduce a new k-space traversal strategy for segmented three-dimensional echo planar imaging (3D EPI) that encodes two partitions per radiofrequency excitation, effectively reducing the number excitations used to acquire a 3D EPI dataset by half. METHODS: The strategy was evaluated in the context of functional MRI applications for: image quality compared with segmented 3D EPI, temporal signal-to-noise ratio (tSNR) (the ability to detect resting state networks compared with multislice two-dimensional (2D) EPI and segmented 3D EPI, and temporal resolution (the ability to separate cardiac- and respiration-related fluctuations from the desired blood oxygen level-dependent signal of interest). RESULTS: Whole brain images with a nominal voxel size of 2 mm isotropic could be acquired with a temporal resolution under half a second using traditional parallel imaging acceleration up to 4× in the partition-encode direction and using novel data acquisition speed-up of 2× with a 32-channel coil. With 8× data acquisition speed-up in the partition-encode direction, 3D reduced excitations (RE)-EPI produced acceptable image quality without introduction of noticeable additional artifacts. Due to increased tSNR and better characterization of physiological fluctuations, the new strategy allowed detection of more resting state networks compared with multislice 2D-EPI and segmented 3D EPI. CONCLUSION: 3D RE-EPI resulted in significant increases in temporal resolution for whole brain acquisitions and in improved physiological noise characterization compared with 2D-EPI and segmented 3D EPI. Magn Reson Med 72:786-792, 2014. © 2013 Wiley Periodicals, Inc.
Resumo:
KNOTS are usually categorized in terms of topological properties that are invariant under changes in a knot's spatial configuration(1-4). Here we approach knot identification from a different angle, by considering the properties of particular geometrical forms which we define as 'ideal'. For a knot with a given topology and assembled from a tube of uniform diameter, the ideal form is the geometrical configuration having the highest ratio of volume to surface area. Practically, this is equivalent to determining the shortest piece of tube that can be closed to form the knot. Because the notion of an ideal form is independent of absolute spatial scale, the length-to-diameter ratio of a tube providing an ideal representation is constant, irrespective of the tube's actual dimensions. We report the results of computer simulations which show that these ideal representations of knots have surprisingly simple geometrical properties. In particular, there is a simple linear relationship between the length-to-diameter ratio and the crossing number-the number of intersections in a two-dimensional projection of the knot averaged over all directions. We have also found that the average shape of knotted polymeric chains in thermal equilibrium is closely related to the ideal representation of the corresponding knot type. Our observations provide a link between ideal geometrical objects and the behaviour of seemingly disordered systems, and allow the prediction of properties of knotted polymers such as their electrophoretic mobility(5).
Resumo:
We investigate in this note the dynamics of a one-dimensional Keller-Segel type model on the half-line. On the contrary to the classical configuration, the chemical production term is located on the boundary. We prove, under suitable assumptions, the following dichotomy which is reminiscent of the two-dimensional Keller-Segel system. Solutions are global if the mass is below the critical mass, they blow-up in finite time above the critical mass, and they converge to some equilibrium at the critical mass. Entropy techniques are presented which aim at providing quantitative convergence results for the subcritical case. This note is completed with a brief introduction to a more realistic model (still one-dimensional).
Resumo:
Three-dimensional sequence stratigraphy is a potent exploration and development tool for the discovery of subtle stratigraphic traps. Reservoir morphology, heterogeneity and subtle stratigraphic trapping mechanisms can be better understood through systematic horizontal identification of sedimentary facies of systems tracts provided by three-dimensional attribute maps used as an important complement to the sequential analysis on the two-dimensional seismic lines and the well log data. On new prospects as well as on already-producing fields, the additional input of sequential analysis on three-dimensional data enables the identification, location and precise delimitation of new potentially productive zones. The first part of this paper presents four typical horizontal seismic facies assigned to the successive systems tracts of a third- or fourth-order sequence deposited in inner to outer neritic conditions on a elastic shelf. The construction of this synthetic representative sequence is based on the observed reproducibility of the horizontal seismic facies response to cyclic eustatic events on more than 35 sequences registered in the Gulf coast Plio-Pleistocene and Late Miocene, offshore Louisiana in the West Cameron region of the Gulf of Mexico. The second part shows how three-dimensional sequence stratigraphy can contribute in localizing and understanding sedimentary facies associated with productive zones. A case study in the early Middle Miocene Cibicides opima sands shows multiple stacked gas accumulations in the top slope fan, prograding wedge and basal transgressive systems tract of the third-order sequence between SB15.5 and SB 13.8 Ma.
Resumo:
A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We prove a characterization of the support of the law of the solution for a stochastic wave equation with two-dimensional space variable, driven by a noise white in time and correlated in space. The result is a consequence of an approximation theorem, in the convergence of probability, for equations obtained by smoothing the random noise. For some particular classes of coefficients, approximation in the Lp-norm for p¿1 is also proved.
Resumo:
We consider a renormalizable two-dimensional model of dilaton gravity coupled to a set of conformal fields as a toy model for quantum cosmology. We discuss the cosmological solutions of the model and study the effect of including the back reaction due to quantum corrections. As a result, when the matter density is below some threshold new singularities form in a weak-coupling region, which suggests that they will not be removed in the full quantum theory. We also solve the Wheeler-DeWitt equation. Depending on the quantum state of the Universe, the singularities may appear in a quantum region where the wave function is not oscillatory, i.e., when there is not a well-defined notion of classical spacetime.
Resumo:
The most general black M5-brane solution of eleven-dimensional supergravity (with a flat R4 spacetime in the brane and a regular horizon) is characterized by charge, mass and two angular momenta. We use this metric to construct general dual models of large-N QCD (at strong coupling) that depend on two free parameters. The mass spectrum of scalar particles is determined analytically (in the WKB approximation) and numerically in the whole two-dimensional parameter space. We compare the mass spectrum with analogous results from lattice calculations, and find that the supergravity predictions are close to the lattice results everywhere on the two dimensional parameter space except along a special line. We also examine the mass spectrum of the supergravity Kaluza-Klein (KK) modes and find that the KK modes along the compact D-brane coordinate decouple from the spectrum for large angular momenta. There are however KK modes charged under a U(1)×U(1) global symmetry which do not decouple anywhere on the parameter space. General formulas for the string tension and action are also given.
Resumo:
We clarify some issues related to the evaluation of the mean value of the energy-momentum tensor for quantum scalar fields coupled to the dilaton field in two-dimensional gravity. Because of this coupling, the energy-momentum tensor for matter is not conserved and therefore it is not determined by the trace anomaly. We discuss different approximations for the calculation of the energy-momentum tensor and show how to obtain the correct amount of Hawking radiation. We also compute cosmological particle creation and quantum corrections to the Newtonian potential.