955 resultados para Trees, Fossil
Resumo:
Rapidly increasing atmospheric CO2 is not only changing the climate system but may also affect the biosphere directly through stimulation of plant growth and ecosystem carbon and nutrient cycling. Although forest ecosystems play a critical role in the global carbon cycle, experimental information on forest responses to rising CO2 is scarce, due to the sheer size of trees. Here, we present a synthesis of the only study world-wide where a diverse set of mature broadleaved trees growing in a natural forest has been exposed to future atmospheric CO2 levels (c. 550ppm) by free-air CO2 enrichment (FACE). We show that litter production, leaf traits and radial growth across the studied hardwood species remained unaffected by elevated CO2 over 8years. CO2 enrichment reduced tree water consumption resulting in detectable soil moisture savings. Soil air CO2 and dissolved inorganic carbon both increased suggesting enhanced below-ground activity. Carbon release to the rhizosphere and/or higher soil moisture primed nitrification and nitrate leaching under elevated CO2; however, the export of dissolved organic carbon remained unaltered.Synthesis. Our findings provide no evidence for carbon-limitation in five central European hardwood trees at current ambient CO2 concentrations. The results of this long-term study challenge the idea of a universal CO2 fertilization effect on forests, as commonly assumed in climate-carbon cycle models.
Resumo:
The presence of soluble carbohydrates in the cambial zone, either from sugars recently produced during photosynthesis or from starch remobilized from storage organs, is necessary for radial tree growth. However, considerable uncertainties on carbohydrate dynamics and the consequences on tree productivity exist. This study aims to better understand the variation in different carbon pools at intra-annual resolution by quantifying how cambial zone sugar and starch concentrations fluctuate over the season and in relation to cambial phenology. A comparison between two physiologically different species growing at the same site, i.e., the evergreen Picea abies Karst. and the deciduous Larix decidua Mill., and between L. decidua from two contrasting elevations, is presented to identify mechanisms of growth limitation. Results indicate that the annual cycle of sugar concentration within the cambial zone is coupled to the process of wood formation. The highest sugar concentration is observed when the number of cells in secondary wall formation and lignification stages is at a maximum, subsequent to most radial growth. Starch disappears in winter, while other freeze-resistant non-structural carbohydrates (NSCs) increase. Slight differences in NSC concentration between species are consistent with the differing climate sensitivity of the evergreen and deciduous species investigated. The general absence of differences between elevations suggests that the cambial activity of trees growing at the treeline was not limited by the availability of carbohydrates at the cambial zone but instead by environmental controls on the growing season duration.
Resumo:
(1) A mathematical theory for computing the probabilities of various nucleotide configurations is developed, and the probability of obtaining the correct phylogenetic tree (model tree) from sequence data is evaluated for six phylogenetic tree-making methods (UPGMA, distance Wagner method, transformed distance method, Fitch-Margoliash's method, maximum parsimony method, and compatibility method). The number of nucleotides (m*) necessary to obtain the correct tree with a probability of 95% is estimated with special reference to the human, chimpanzee, and gorilla divergence. m* is at least 4,200, but the availability of outgroup species greatly reduces m* for all methods except UPGMA. m* increases if transitions occur more frequently than transversions as in the case of mitochondrial DNA. (2) A new tree-making method called the neighbor-joining method is proposed. This method is applicable either for distance data or character state data. Computer simulation has shown that the neighbor-joining method is generally better than UPGMA, Farris' method, Li's method, and modified Farris method on recovering the true topology when distance data are used. A related method, the simultaneous partitioning method, is also discussed. (3) The maximum likelihood (ML) method for phylogeny reconstruction under the assumption of both constant and varying evolutionary rates is studied, and a new algorithm for obtaining the ML tree is presented. This method gives a tree similar to that obtained by UPGMA when constant evolutionary rate is assumed, whereas it gives a tree similar to that obtained by the maximum parsimony tree and the neighbor-joining method when varying evolutionary rate is assumed. ^
Resumo:
Resource heterogeneity may influence how plants are attacked and respond to consumers in multiple ways. Perhaps a better understanding of how this interaction might limit sapling recruitment in tree populations may be achieved by examining species’ functional responses to herbivores on a continuum of resource availability. Here, we experimentally reduced herbivore pressure on newly established seedlings of two dominant masting trees in 40 canopy gaps, across c. 80 ha of tropical rain forest in central Africa (Korup, Cameroon). Mesh cages were built to protect individual seedlings, and their leaf production and changes in height were followed for 22 months. With more light, herbivores increasingly prevented the less shade-tolerant Microberlinia bisulcata from growing as tall as it could and producing more leaves, indicating an undercompensation. The more shade-tolerant Tetraberlinia bifoliolata was much less affected by herbivores, showing instead near to full compensation for leaf numbers, and a negligible to weak impact of herbivores on its height growth. A stage-matrix model that compared control and caged populations lent evidence for a stronger impact of herbivores on the long-term population dynamics of M. bisulcata than T. bifoliolata. Our results suggest that insect herbivores can contribute to the local coexistence of two abundant tree species at Korup by disproportionately suppressing sapling recruitment of the faster-growing dominant via undercompensation across the light gradient created by canopy disturbances. The functional patterns we have documented here are consistent with current theory, and, because gap formations are integral to forest regeneration, they may be more widely applicable in other tropical forest communities. If so, the interaction between life-history and herbivore impact across light gradients may play a substantial role in tree species coexistence.
Resumo:
A 272-ha grove of dominant Microberlinia bisulcata (Caesalpinioideae) adult trees greater than or equal to 50 cm stem diameter was mapped in its entirety in the southern part of Korup National Park, Cameroon. The approach used an earlier-established 82.5-ha permanent plot with a new surrounding 50-m grid of transect lines. Tree diameters were available from the plot but trees on the grid were recorded as being greater than or equal to 50 cm. The grove consisted of 1028 trees in 2000. Other species occurred within the grove. including the associated subdominants Tetraberlinia bifoliolata and T. korupensis. Microberlinia bisulcata becomes adult at a stein diameter of c. 50 cm and at an estimated age of 50 y. Three oval-shaped subgroves with dimensions c. 8 50 in x 13 50 in (90 ha) were defined. For two of them (within the plot) tree diameters were available. Subgroves differed in their scales and intensities of spatial tree patterns, and in their size frequency distributions, these suggesting differing past dynamics. The modal scale of clumping was 40-50 m. Seed dispersal by pod ejection (to c. 50 in) was evident from the semi-circles of trees at the grove's edge and from the many internal circles (100-200 m diameter). The grove has the capacity. therefore, to increase at c. 100 m per century. To form its present extent and structure. it is inferred that it expanded and infilled from a possibly smaller area of lower adult-tree density. This possibly happened in three waves of recruitment, each one determined by a period of several intense disturbances. Climate records for Africa show that 1740-50 and 1820-30 were periods of drought, and that 1870-1895 was also regionally very dry. Canopy openings allow the light-demanding and fast-growing ectomycorrhizal M. bisulcata to establish, but successive releases are thought to be required to achieve effective recruitment. Nevertheless, in the last 50 y there were no major events and recruitment in the grove was very poor. This present study leads to a new hypothesis of the role of periods of multiple extreme events being the driving factor for the population dynamics of many large African tree species such as M. bisulcata.
Resumo:
Incident rainfall is a major source of nutrient input to a forest ecosystem and the consequent throughfall and stemflow contribute to nutrient cycling. These rain-based fluxes were measured over 12 mo in two forest types in Korup National Park, Cameroon, one with low (LEM) and one with high (HEM) ectomycorrhizal abundances of trees. Throughfall was 96.6 and 92.4% of the incident annual rainfall (5370 mm) in LEM and HEM forests respectively; stemflow was correspondingly 1.5 and 2.2%. Architectural analysis showed that ln(funneling ratio) declined linearly with increasing ln(basal area) of trees. Mean annual inputs of N, P, K, Mg and Ca in incident rainfall were 1.50, 1.07, 7.77, 5.25 and 9.27 kg ha(-1), and total rain-based inputs to the forest floor were 5.0, 3.2, 123.4, 14.4 and 37.7 kg ha-1 respectively. The value for K is high for tropical forests and that for N is low. Nitrogen showed a significantly lower loading of throughfall and stemflow in HEM than in LEM forest, this being associated in the HEM forest with a greater abundance of epiphytic bryophytes which may absorb more N. Incident rainfall provided c. 35% of the gross input of P to the forest floor (i. e., rain-based plus small litter inputs), a surprisingly high contribution given the sandy P-poor soils. At the start of the wet season leaching of K from the canopy was particularly high. Calcium in the rain was also highest at this time, most likely due to washing off of dry-deposited Harmattan dusts. It is proposed that throughfall has an important `priming' function in the rapid decomposition of litter and mineralization of P at the start of the wet season. The contribution of P inputted from the atmosphere appears to be significant when compared to the rates of P mineralization from leaf litter.
Resumo:
The water relations of two tree species in the Euphorbiaceae were compared to test in part a hypothesis that the forest understorey plays an integral role in drought response. At Danum, Sabah, the relatively common species Dimorphocalyx muricatus is associated with ridges whilst another species, Mallotus wrayi, occurs widely both on ridges and lower slopes. Sets of subplots within two 4 -ha permanent plots in this lowland dipterocarp rain forest, were positioned on ridges and lower slopes. Soil water potentials were recorded in 1995-1997, and leaf water potentials were measured on six occasions. Soil water potentials on the ridges (-0.047 MPa) were significantly lower than on the lower slopes (-0.012 MPa), but during the driest period in May 1997 they fell to similarly low levels on both sites (-0.53 MPa). A weighted 40-day accumulated rainfall index was developed to model the soil water potentials. At dry times, D. muricatus (ridge) had significantly higher pre-dawn (-0.21 v. -0.57 MPa) and mid-day (-0.59 v. -1.77 MPa) leaf water potentials than M. wrayi (mean of ridge and lower slope). Leaf osmotic potentials of M. wrayi on the ridges were lower (-1.63 MPa) than on lower slopes (-1.09 MPa), with those for D. muricatus being intermediate (-1.29 MPa): both species adjusted osmotically between wet and dry times. D. muricatus trees were more deeply rooted than M. wrayi trees (97 v. 70 cm). M. wrayi trees had greater lateral root cross-sectional areas than D. muricatus trees although a greater proportion of this sectional area for D. muricatus was further down the soil profile. D. muricatus appeared to maintain relatively high water potentials during dry periods because of its access to deeper water supplies and thus it largely avoided drought effects, but M. wrayi seemed to be more affected yet tolerant of drought and was more plastic in its response. The interaction between water availability and topography determines these species' distributions and provides insights into how rain forests can withstand occasional strong droughts.
Resumo:
In a forest grove at Korup dominated by the ectomycorrhizal species Microberlinia bisulcata, an experiment tested whether phosphorus (P) was a limiting nutrient. P-fertilization of seven subplots 1995-97 was compared with seven controls. It led to large increases in soil P concentrations. Trees were measured in 1995 and 2000. M. bisulcata and four other species were transplanted into the treatments, and a wild cohort of M. bisulcata seedlings was followed in both. Leaf litter fall from trees and seedlings were analysed for nutrients. Growth of trees was not affected by added P. Transplanted seedlings survived better in the controls than added-P subplots: they did not grow better with added-P.M. bisulcata wildlings survived slightly better in the added-P subplots in yr 1 but not later. Litter fall and transplanted survivors had much higher concentrations of P (not N) in the added-P than control subplots. Under current conditions, it appears that P does not limit growth of trees or hinder seedling establishment, especially of M. bisculcata, in these low-P grove soils.
Resumo:
Based on litter mass and litterfall data, decomposition rates for leaves were found to be fast (k = 3.3) and the turnover times short (3.6 mo) on the low-nutrient sandy soils of Korup. Leaf litter of four ectomycorrhizal tree species (Berlinia bracteosa, Didelotia africana, Microberlinia bisulcata and Tetraberlinia bifoliolata) and of three non-ectomycorrhizal species (Cola verticillata, Oubanguia alata and Strephonema pseudocola) from Korup were left to decompose in 2-mm mesh bags on the forest floor in three plots of each of two forest types forest of low (LEM) and high (HEM) abundance of ectomycorrhizal (caesalp) trees. The litter of the ectomycorrhizal species decayed at a significantly slower rate than that of the non-ectomycorrhizal species, although the former were richer in P and N concentrations of the start. Disappearance rates of the litter layer showed a similar trend. Ectomycorrhizal species immobilized less N, but mineralized more P, than non-ectomycorrhizal species. Differences between species groups in K, Mg and Ca mineralization were negligible. Effect of forest type was clear only for Mg: mineralization of Mg was faster in the HEM than LEM plots, a pattern repeated across all species. This difference was attributed to a much more prolific fine root mat in the HEM than LEM forest. The relatively fast release of P from the litter of the ectomycorrhizal species suggests that the mat must allow an efficient uptake to maintain P in the forest ecosystem.
Climate refugia: joint inference from fossil records, species distribution models and phylogeography
Resumo:
Climate refugia, locations where taxa survive periods of regionally adverse climate, are thought to be critical for maintaining biodiversity through the glacial–interglacial climate changes of the Quaternary. A critical research need is to better integrate and reconcile the three major lines of evidence used to infer the existence of past refugia – fossil records, species distribution models and phylogeographic surveys – in order to characterize the complex spatiotemporal trajectories of species and populations in and out of refugia. Here we review the complementary strengths, limitations and new advances for these three approaches. We provide case studies to illustrate their combined application, and point the way towards new opportunities for synthesizing these disparate lines of evidence. Case studies with European beech, Qinghai spruce and Douglas-fir illustrate how the combination of these three approaches successfully resolves complex species histories not attainable from any one approach. Promising new statistical techniques can capitalize on the strengths of each method and provide a robust quantitative reconstruction of species history. Studying past refugia can help identify contemporary refugia and clarify their conservation significance, in particular by elucidating the fine-scale processes and the particular geographic locations that buffer species against rapidly changing climate.
Resumo:
Radiocarbon (14C) analysis is a unique tool to distinguish fossil/nonfossil sources of carbonaceous aerosols. We present 14C measurements of organic carbon (OC) and total carbon (TC) on highly time resolved filters (3–4 h, typically 12 h or longer have been reported) from 7 days collected during California Research at the Nexus of Air Quality and Climate Change (CalNex) 2010 in Pasadena. Average nonfossil contributions of 58% ± 15% and 51% ± 15% were found for OC and TC, respectively. Results indicate that nonfossil carbon is a major constituent of the background aerosol, evidenced by its nearly constant concentration (2–3 μgC m−3). Cooking is estimated to contribute at least 25% to nonfossil OC, underlining the importance of urban nonfossil OC sources. In contrast, fossil OC concentrations have prominent and consistent diurnal profiles, with significant afternoon enhancements (~3 μgC m−3), following the arrival of the western Los Angeles (LA) basin plume with the sea breeze. A corresponding increase in semivolatile oxygenated OC and organic vehicular emission markers and their photochemical reaction products occurs. This suggests that the increasing OC is mostly from fresh anthropogenic secondary OC (SOC) from mainly fossil precursors formed in the western LA basin plume. We note that in several European cities where the diesel passenger car fraction is higher, SOC is 20% less fossil, despite 2–3 times higher elemental carbon concentrations, suggesting that SOC formation from gasoline emissions most likely dominates over diesel in the LA basin. This would have significant implications for our understanding of the on-road vehicle contribution to ambient aerosols and merits further study.
Resumo:
BACKGROUND Hypoglycin A, found in seeds of Acer negundo, appears to cause seasonal pasture myopathy (SPM) in North America and is implicated in atypical myopathy (AM) in Europe. Acer negundo is uncommon in Europe. Thus, the potential source of hypoglycin A in Europe is unknown. HYPOTHESIS AND OBJECTIVES We hypothesized that seeds of Acer pseudoplatanus were the source of hypoglycin A in Europe. Our objective was to determine the concentration of hypoglycin A in seeds of A. pseudoplatanus trees located in pastures where previous cases of AM had occurred. ANIMALS None. METHODS University of Berne records were searched to retrospectively identify 6 farms with 10 AM cases and 11 suspected AM deaths between 2007 and 2011. During October 2012, A. pseudoplatanus seeds were collected from 2 to 6 trees per pasture on 6 AM farms (7 pastures) from trees in or close to 2 pastures on 2 control farms where AM had not been previously reported. Hypoglycin A in seeds was analyzed by GC-MS. RESULTS Acer pseudoplatanus trees were identified on all AM pastures. Hypoglycin A was detected in all A. pseudoplatanus seeds in highly variable concentrations ranging from 0.04 to 2.81 μg/mg (mean 0.69) on AM farms and 0.10 to 9.12 μg/mg (mean 1.59) on control farms. CONCLUSION AND CLINICAL IMPORTANCE Preventing horses from grazing pastures containing A. pseudoplatanus seeds during late fall and early spring might be the best means to prevent AM.