845 resultados para Timing task
Resumo:
Training in step-down inhibitory avoidance (0.3-mA footshock) is followed by biochemical changes in rat hippocampus that strongly suggest an involvement of quantitative changes in glutamate AMPA receptors, followed by changes in the dopamine D1 receptor/cAMP/protein kinase A (PKA)/CREB-P signalling pathway in memory consolidation. AMPA binding to its receptor and levels of the AMPA receptor-specific subunit GluR1 increase in the hippocampus within the first 3 h after training (20-70%). Binding of the specific D1 receptor ligand, SCH23390, and cAMP levels increase within 3 or 6 h after training (30-100%). PKA activity and CREB-P levels show two peaks: a 35-40% increase 0 h after training, and a second increase 3-6 h later (35-60%). The results correlate with pharmacological findings showing an early post-training involvement of AMPA receptors, and a late involvement of the D1/cAMP/PKA/CREB-P pathway in memory consolidation of this task
Resumo:
Within the framework of the working memory model proposed by A. Baddeley and G. Hitch, a dual-task paradigm has been suggested to evaluate the capacity to perform simultaneously two concurrent tasks. This capacity is assumed to reflect the functioning of the central executive component, which appears to be impaired in patients with dysexecutive syndrome. The present study extends the investigation of an index ("mu"), which is supposed to indicate the capacity of coordination of concurrent auditory digit span and tracking tasks, by testing the influence of training on the performance in the dual task. The presentation of the same digit sequence lists or always-different lists did not differently affect the performance. The span length affected the mu values. The improved performance in the tasks under the dual condition closely resembled the improvement in the single-task performance. So, although training improved performance in the single and dual conditions, especially for the tracking component, the mu values remained stable throughout the sessions when the single tasks were performed first. Conversely, training improved the capacity of dual-task coordination throughout the sessions when dual task was performed first, addressing the issue of the contribution of the within-session practice to the mu index.
Resumo:
The measure "mu", proposed as an index of the ability to coordinate concurrent box-crossing (BC) and digit-span (DS) tasks in the dual task (DT), should reflect the capacity of the executive component of the working memory system. We investigated the effect of practice in BC and of a change in the digit span on mu by adding previous practice trials in BC and diminishing, maintaining or increasing the digit sequence length. The mu behavior was evaluated throughout three trials of the test. Reported strategies in digit tasks were also analyzed. Subjects with diminished span showed the best performance in DT due to a stable performance in DS and BC in the single- and dual-task conditions. These subjects also showed a more stable performance throughout trials. Subjects with diminished span tended to employ effortless strategies, whereas subjects with increased span employed effort-requiring strategies and showed the lowest means of mu. Subjects with initial practice trials showed the best performance in BC and the most differentiated performance between the single- and dual-task conditions in BC. The correlation coefficient between the mu values obtained in the first and second trials was 0.814 for subjects with diminished span and practice trials in BC. It seems that the within-session practice in BC and the performance variability in DS affect the reliability of the index mu. To control these factors we propose the introduction of previous practice trials in BC and a modification of the current method to determine the digit sequence length. This proposal should contribute to the development of a more reliable method to evaluate the executive capacity of coordination in the dual-task paradigm.
Resumo:
The interactions between the median raphe nucleus (MRN) serotonergic system and the septohippocampal muscarinic cholinergic system in the modulation of immediate working memory storage performance were investigated. Rats with sham or ibotenic acid lesions of the MRN were bilaterally implanted with cannulae in the dentate gyrus of the hippocampus and tested in a light/dark step-through inhibitory avoidance task in which response latency to enter the dark compartment immediately after the shock served as a measure of immediate working memory storage. MRN lesion per se did not alter response latency. Post-training intrahippocampal scopolamine infusion (2 and 4 µg/side) produced a more marked reduction in response latencies in the lesioned animals compared to the sham-lesioned rats. Results suggest that the immediate working memory storage performance is modulated by synergistic interactions between serotonergic projections of the MRN and the muscarinic cholinergic system of the hippocampus.
Resumo:
To inhibit an ongoing flow of thoughts or actions has been largely considered to be a crucial executive function, and the stop-signal paradigm makes inhibitory control measurable. Stop-signal tasks usually combine two concurrent tasks, i.e., manual responses to a primary task (go-task) are occasionally countermanded by a stimulus which signals participants to inhibit their response in that trial (stop-task). Participants are always instructed not to wait for the stop-signal, since waiting strategies cause the response times to be unstable, invalidating the data. The aim of the present study was to experimentally control the strategies of waiting deliberately for the stop-signal in a stop-task by means of an algorithm that measured the variation in the reaction times to go-stimuli on-line, and displayed a warning legend urging participants to be faster when their reaction times were more than two standard deviations of the mean. Thirty-four university students performed a stop-task with go- and stop-stimuli, both of which were delivered in the visual modality and were lateralized within the visual field. The participants were divided into two groups (group A, without the algorithm, vs group B, with the algorithm). Group B exhibited lower variability of reaction times to go-stimuli, whereas no significant between-group differences were found in any of the measures of inhibitory control, showing that the algorithm succeeded in controlling the deliberate waiting strategies. Differences between deliberate and unintentional waiting strategies, and anxiety as a probable factor responsible for individual differences in deliberate waiting behavior, are discussed.
Resumo:
The paper-and-pencil digit-comparison task for assessing negative priming (NP) was introduced, using a referent-size-selection procedure that was demonstrated to enhance the effect. NP is indicated by slower responses to recently ignored items, and proposed within the clinical-experimental framework as a major cognitive index of active suppression of distracting information, critical to executive functioning. The digit-comparison task requires circling digits of a list with digit-asterisk pairs (a baseline measure for digit-selection), and the larger of two digits in each pair of the unrelated (with different digits in successive digit-pairs) and related lists (in which the smaller digit subsequently became a target). A total of 56 students (18-38 years) participated in two experiments that explored practice effects across lists and demonstrated reliable NP, i.e., slowing to complete the related list relative to the unrelated list, (F(2, 44) = 52.42, P < 0.0001). A 3rd experiment examined age-related effects. In the paper-and-pencil digit-comparison task, NP was reliable for the younger (N = 8, 18-24 years) and middle-aged adults (N = 8, 31-54 years), but absent for the older group (N = 8, 68-77 years). NP was also reduced with aging in a computer-implemented digit-comparison task, and preserved in a task typically used to test location-specific NP, accounting for the dissociation between identity- and spatial-based suppression of distractors (Rao R(3, 12) = 16.02, P < 0.0002). Since the paper-and-pencil digit-comparison task can be administered easily, it can be useful for neuropsychologists seeking practical measures of NP that do not require cumbersome technical equipment.
Resumo:
During adolescence, the sleep phase delay associated with early school times increases daytime sleepiness and reduces psychomotor performance. Some studies have shown an effect of gender on psychomotor performance in adults and children. Males present faster reaction times (RT) compared with females. The aim of the present study was to evaluate the influence of gender on Palm psychomotor vigilance task (PVT) performance in adolescents. Thirty-four adolescents (19 girls, 13 to 16 years old) attending morning school classes of a public school in Curitiba, PR, Brazil, participated in the study. Sleep patterns were measured using actigraphy and sleepiness data were accessed with the Karolinska Sleepiness Scale (KSS). KSS and PVT measurements were collected at two times in the morning (8:00 and 11:00 h). The data were compared using one-way ANOVA, considering gender as a factor. ANOVA indicated that gender did not affect sleep patterns and subjective somnolence; however, a statistically significant effect of gender was detected for PVT performance. Boys presented faster RT (RT-PVT1: 345.51 ms, F = 6.08, P < 0.05; RT-PVT2: 343.30 ms, F = 6.35, P < 0.05) and fewer lapses (lapses-PVT1: 8.71, F = 4.45, P < 0.05; lapses-PVT2: 7.82, F = 7.06, P < 0.05) compared with girls (RT-PVT1: 402.96; RT-PVT2: 415.70; lapses-PVT1: 16.33; lapses-PVT2: 17.80). These results showed that this effect of gender, already reported in adults and children, is also observed in adolescents. The influence of gender should be taken into account in studies that use Palm PVT to evaluate psychomotor performance in this age range.
Resumo:
Circadian timing is structured in such a way as to receive information from the external and internal environments, and its function is the timing organization of the physiological and behavioral processes in a circadian pattern. In mammals, the circadian timing system consists of a group of structures, which includes the suprachiasmatic nucleus (SCN), the intergeniculate leaflet and the pineal gland. Neuron groups working as a biological pacemaker are found in the SCN, forming a biological master clock. We present here a simple model for the circadian timing system of mammals, which is able to reproduce two fundamental characteristics of biological rhythms: the endogenous generation of pulses and synchronization with the light-dark cycle. In this model, the biological pacemaker of the SCN was modeled as a set of 1000 homogeneously distributed coupled oscillators with long-range coupling forming a spherical lattice. The characteristics of the oscillator set were defined taking into account the Kuramoto's oscillator dynamics, but we used a new method for estimating the equilibrium order parameter. Simultaneous activities of the excitatory and inhibitory synapses on the elements of the circadian timing circuit at each instant were modeled by specific equations for synaptic events. All simulation programs were written in Fortran 77, compiled and run on PC DOS computers. Our model exhibited responses in agreement with physiological patterns. The values of output frequency of the oscillator system (maximal value of 3.9 Hz) were of the order of magnitude of the firing frequencies recorded in suprachiasmatic neurons of rodents in vivo and in vitro (from 1.8 to 5.4 Hz).
Resumo:
The occurrence of a weak auditory warning stimulus increases the speed of the response to a subsequent visual target stimulus that must be identified. This facilitatory effect has been attributed to the temporal expectancy automatically induced by the warning stimulus. It has not been determined whether this results from a modulation of the stimulus identification process, the response selection process or both. The present study examined these possibilities. A group of 12 young adults performed a reaction time location identification task and another group of 12 young adults performed a reaction time shape identification task. A visual target stimulus was presented 1850 to 2350 ms plus a fixed interval (50, 100, 200, 400, 800, or 1600 ms, depending on the block) after the appearance of a fixation point, on its left or right side, above or below a virtual horizontal line passing through it. In half of the trials, a weak auditory warning stimulus (S1) appeared 50, 100, 200, 400, 800, or 1600 ms (according to the block) before the target stimulus (S2). Twelve trials were run for each condition. The S1 produced a facilitatory effect for the 200, 400, 800, and 1600 ms stimulus onset asynchronies (SOA) in the case of the side stimulus-response (S-R) corresponding condition, and for the 100 and 400 ms SOA in the case of the side S-R non-corresponding condition. Since these two conditions differ mainly by their response selection requirements, it is reasonable to conclude that automatic temporal expectancy influences the response selection process.
Resumo:
F/A-18-monitoimihävittäjän ohjaajan tehtävän kognitiiviset vaatimukset ovat korkeat. Kognitiivisen kuormituksen taso vaikuttaa hävittäjäohjaajan suoritustasoon ja subjektiivisiin tun-temuksiin. Yerkesin ja Dodsonin periaatteen mukaisesti erittäin matala tai erittäin korkea kuormituksen taso laskee suoritustasoa. Optimaalinen kuormituksen taso ja suoritustaso saa-vutetaan jossain ääripäiden välillä. Hävittäjäohjaajan kognitiivisen kuormituksen tasoon vaikuttaa lentotehtävän suorittamiseen vaadittava henkinen ponnistelu. Vaadittavan ponnistelun taso riippuu tehtävien vaatimustasosta ja määrästä, tehtäviin käytettävissä olevasta ajasta sekä yksilöllisistä ominaisuuksista. Tutkimuksessa mitattiin kognitiivisen kuormituksen tasoa subjektiivisen arvioinnin menetelmällä NASA-TLX (National Aeronautics and Space Administration - Task Load Index) ja MCH (Modified Cooper-Harper) -mittareilla. Tutkimuksessa selvitettiin mittareiden havaintoarvojen muutosta, sensitiivisyyttä ja yhdenmukaisuutta kognitiivisen kuormituksen tason muuttuessa. Tutkimuksen mittauksiin osallistui 35 Suomen ilmavoimien aktiivisessa palveluksessa olevaa F/A-18-monitoimihävittäjäohjaajaa. Koehenkilöiden lentotuntien keskiarvo F/A-18-monitoimihävittäjällä oli 598 tuntia ja keskihajonta 445 tuntia. Koehenkilöiden tehtävänä oli lentää F/A-18-virtuaalisimulaattorilla 11 ILS (Instrument Landing System) -mittarilähestymistä eri aloitusetäisyyksiltä kiitotien kynnyksestä. Kognitiivisesti kuormitta-van mittarilähestymistehtävän aikana kuormituksen tasoa nostettiin lisätehtävillä ja vähentä-mällä tehtäviin käytettävissä olevaa aikaa. Koehenkilöitä pyydettiin ponnistelemaan mahdollisimman paljon tehtävien suorittamisen aikana hyvän suoritustason ylläpitämiseksi. Tulosten perusteella mittareiden havaintoarvot muuttuivat kognitiivisen kuormituksen tason muuttuessa. Käytettävissä olevan ajan vaikutus kognitiivisen kuormituksen tasoon oli tilastollisesti erittäin merkitsevä. Mittarit olivat sensitiivisiä kognitiivisen kuormituksen tason muutokselle ja antoivat yhdenmukaisia havaintoarvoja.
Resumo:
This work presents synopsis of efficient strategies used in power managements for achieving the most economical power and energy consumption in multicore systems, FPGA and NoC Platforms. In this work, a practical approach was taken, in an effort to validate the significance of the proposed Adaptive Power Management Algorithm (APMA), proposed for system developed, for this thesis project. This system comprise arithmetic and logic unit, up and down counters, adder, state machine and multiplexer. The essence of carrying this project firstly, is to develop a system that will be used for this power management project. Secondly, to perform area and power synopsis of the system on these various scalable technology platforms, UMC 90nm nanotechnology 1.2v, UMC 90nm nanotechnology 1.32v and UMC 0.18 μmNanotechnology 1.80v, in order to examine the difference in area and power consumption of the system on the platforms. Thirdly, to explore various strategies that can be used to reducing system’s power consumption and to propose an adaptive power management algorithm that can be used to reduce the power consumption of the system. The strategies introduced in this work comprise Dynamic Voltage Frequency Scaling (DVFS) and task parallelism. After the system development, it was run on FPGA board, basically NoC Platforms and on these various technology platforms UMC 90nm nanotechnology1.2v, UMC 90nm nanotechnology 1.32v and UMC180 nm nanotechnology 1.80v, the system synthesis was successfully accomplished, the simulated result analysis shows that the system meets all functional requirements, the power consumption and the area utilization were recorded and analyzed in chapter 7 of this work. This work extensively reviewed various strategies for managing power consumption which were quantitative research works by many researchers and companies, it's a mixture of study analysis and experimented lab works, it condensed and presents the whole basic concepts of power management strategy from quality technical papers.
Resumo:
The maximum amount of ethyl carbamate (EC), a known animal carcinogen produced by the reaction of urea and ethanol, allowed in alcoholic beverages is regulated by legislation in many countries. Wine yeast produce urea by the metabolism of arginine, the predominant assimilable amino acid in must. This action is due to arginase (encoded by CARl). Regulation of CARl, and other genes in this pathway, is often attributed to a well-documented phenomenon known as nitrogen catabolite repression. The effect of the timing of di-ammonium phosphate (DAP) additions on the nitrogen utilization, regulation of CARl, and EC production was investigated. A correlation was found between the timing of DAP addition and the utilization of nitrogen. When DAP was added earlier in the fermentations, less amino nitrogen and more ammonia nitrogen was sequestered from the media by the cells. It was also seen that early DAP addition led to more total nitrogen being used, with a maximal difference of ~25% between fermentations where no DAP was added versus addition at the start of the fermentation. The effect of the timing ofDAP addition on the expression of CARJ during fermentation was analyzed via northern transfer and the relative levels of CARl expression were determined. The trends in expression can be correlated to the nitrogen data and be used to partially explain differences in EC formation between the treatments. EC was quantified at the end of fermentation by GC/MS. In Montrachet yeast, a significant positive correlation was found between the timing of DAP addition, from early to late, and the final EC concentration m the wine (r = 0.9226). In one of the fermentations, EC levels of 30.5 ppb was foimd when DAP was added at the onset of fermentation. A twofold increase (69.5 ppb) was observed when DAP was added after 75% of the sugars were metabolized. When no DAP was added, the ethyl carbamate levels are comparable at a value of 38 ppb. In contrast, the timing of DAP additions do not affect the level EC produced by the yeast ECU 18 in this manner. The study of additional yeast strains shows that the effect of DAP addition to fermentations is strain dependent. Our results reveal the potential importance of the timing of DAP addition to grape must with respect to EC production, and the regulatory effect of DAP additions on the expression of genes in the pathway for arginine metabolism in certain wine yeast strains.
Resumo:
In this thesis, three main questions were addressed using event-related potentials (ERPs): (1) the timing of lexical semantic access, (2) the influence of "top-down" processes on visual word processing, and (3) the influence of "bottom-up" factors on visual word processing. The timing of lexical semantic access was investigated in two studies using different designs. In Study 1,14 participants completed two tasks: a standard lexical decision (LD) task which required a word/nonword decision to each target stimulus, and a semantically primed version (LS) of it using the same category of words (e.g., animal) within each block following which participants made a category judgment. In Study 2, another 12 participants performed a standard semantic priming task, where target stimulus words (e.g., nurse) could be either semantically related or unrelated to their primes (e.g., doctor, tree) but the order of presentation was randomized. We found evidence in both ERP studies that lexical semantic access might occur early within the first 200 ms (at about 170 ms for Study 1 and at about 160 ms for Study 2). Our results were consistent with more recent ERP and eye-tracking studies and are in contrast with the traditional research focus on the N400 component. "Top-down" processes, such as a person's expectation and strategic decisions, were possible in Study 1 because of the blocked design, but they were not for Study 2 with a randomized design. Comparing results from two studies, we found that visual word processing could be affected by a person's expectation and the effect occurred early at a sensory/perceptual stage: a semantic task effect in the PI component at about 100 ms in the ERP was found in Study 1 , but not in Study 2. Furthermore, we found that such "top-down" influence on visual word processing might be mediated through separate mechanisms depending on whether the stimulus was a word or a nonword. "Bottom-up" factors involve inherent characteristics of particular words, such as bigram frequency (the total frequency of two-letter combinations of a word), word frequency (the frequency of the written form of a word), and neighborhood density (the number of words that can be generated by changing one letter of an original word or nonword). A bigram frequency effect was found when comparing the results from Studies 1 and 2, but it was examined more closely in Study 3. Fourteen participants performed a similar standard lexical decision task but the words and nonwords were selected systematically to provide a greater range in the aforementioned factors. As a result, a total of 18 word conditions were created with 18 nonword conditions matched on neighborhood density and neighborhood frequency. Using multiple regression analyses, we foimd that the PI amplitude was significantly related to bigram frequency for both words and nonwords, consistent with results from Studies 1 and 2. In addition, word frequency and neighborhood frequency were also able to influence the PI amplitude separately for words and for nonwords and there appeared to be a spatial dissociation between the two effects: for words, the word frequency effect in PI was found at the left electrode site; for nonwords, the neighborhood frequency effect in PI was fovind at the right elecfrode site. The implications of otir findings are discussed.
Resumo:
Objective: Overuse injuries in violinists are a problem that has been primarily analyzed through the use of questionnaires. Simultaneous 3D motion analysis and EMG to measure muscle activity has been suggested as a quantitative technique to explore this problem by identifying movement patterns and muscular demands which may predispose violinists to overuse injuries. This multi-disciplinary analysis technique has, so far, had limited use in the music world. The purpose of this study was to use it to characterize the demands of a violin bowing task. Subjects: Twelve injury-free violinists volunteered for the study. The subjects were assigned to a novice or expert group based on playing experience, as determined by questionnaire. Design and Settings: Muscle activity and movement patterns were assessed while violinists played five bowing cycles (one bowing cycle = one down-bow + one up-bow) on each string (G, D, A, E), at a pulse of 4 beats per bow and 100 beats per minute. Measurements: An upper extremity model created using coordinate data from markers placed on the right acromion process, lateral epicondyle of the humerus and ulnar styloid was used to determine minimum and maximum joint angles, ranges of motion (ROM) and angular velocities at the shoulder and elbow of the bowing arm. Muscle activity in right anterior deltoid, biceps brachii and triceps brachii was assessed during maximal voluntary contractions (MVC) and during the playing task. Data were analysed for significant differences across the strings and between experience groups. Results: Elbow flexion/extension ROM was similar across strings for both groups. Shoulder flexion/extension ROM increaslarger for the experts. Angular velocity changes mirrored changes in ROM. Deltoid was the most active of the muscles assessed (20% MVC) and displayed a pattern of constant activation to maintain shoulder abduction. Biceps and triceps were less active (4 - 12% MVC) and showed a more periodic 'on and off pattern. Novices' muscle activity was higher in all cases. Experts' muscle activity showed a consistent pattern across strings, whereas the novices were more irregular. The agonist-antagonist roles of biceps and triceps during the bowing motion were clearly defined in the expert group, but not as apparent in the novice group. Conclusions: Bowing movement appears to be controlled by the shoulder rather than the elbow as shoulder ROM changed across strings while elbow ROM remained the same. Shoulder injuries are probably due to repetition as the muscle activity required for the movement is small. Experts require a smaller amount of muscle activity to perform the movement, possibly due to more efficient muscle activation patterns as a result of practice. This quantitative multidisciplinary approach to analysing violinists' movements can contribute to fuller understanding of both playing demands and injury mechanisms .