948 resultados para Time-dependent mechanical systems
Resumo:
Endothelin-1 (ET-1) is mainly secreted by endothelial cells and acts as a potent vasoconstrictor. In addition ET-1 has also been shown to have pleiotropic effects on a variety of other systems including adaptive immunity. There are two main ET-1 receptors, ET(A) and ET(B), which have different tissue and functional distributions. Dendritic cells (DC) are pivotal antigen-presenting cells linking the innate with the adaptive immune system. DC are sentinels expressing pattern-recognition receptors, e.g. the toll-like receptors (TLR) for detecting danger signals released from pathogens or tissue injury. Here we show for the first time that stimulation of human monocyte-derived DC with exogenous as well as endogenous selective TLR4 and TLR2 agonists induces the production of ET-1 in a dose- and time-dependent manner. 'Alternative' activation of DC in the presence of 1alpha,25-dihydroxyvitamin D(3) results in a marked potentiation of the endothelin response, whereas prostaglandin E(2) or dexamethasone do not increase ET-1 production. Furthermore, chetomin, an inhibitor of the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha), prevents TLR-mediated secretion of ET-1. Surprisingly, stimulation of human monocytes with LPS does not lead to secretion of detectable amounts of ET-1. These results suggest a role of ET-1 as an important player in human DC biology and innate immunity in general.
Resumo:
BACKGROUND Mechanical unloading of failing hearts can trigger functional recovery but results in progressive atrophy and possibly detrimental adaptation. In an unbiased approach, we examined the dynamic effects of unloading duration on molecular markers indicative of myocardial damage, hypothesizing that potential recovery may be improved by optimized unloading time. METHODS Heterotopically transplanted normal rat hearts were harvested at 3, 8, 15, 30, and 60 days. Forty-seven genes were analyzed using TaqMan-based microarray, Western blot, and immunohistochemistry. RESULTS In parallel with marked atrophy (22% to 64% volume loss at 3 respectively 60 days), expression of myosin heavy-chain isoforms (MHC-α/-β) was characteristically switched in a time-dependent manner. Genes involved in tissue remodeling (FGF-2, CTGF, TGFb, IGF-1) were increasingly upregulated with duration of unloading. A distinct pattern was observed for genes involved in generation of contractile force; an indiscriminate early downregulation was followed by a new steady-state below normal. For pro-apoptotic transcripts bax, bnip-3, and cCasp-6 and -9 mRNA levels demonstrated a slight increase up to 30 days unloading with pronunciation at 60 days. Findings regarding cell death were confirmed on the protein level. Proteasome activity indicated early increase of protein degradation but decreased below baseline in unloaded hearts at 60 days. CONCLUSIONS We identified incrementally increased apoptosis after myocardial unloading of the normal rat heart, which is exacerbated at late time points (60 days) and inversely related to loss of myocardial mass. Our findings suggest an irreversible detrimental effect of long-term unloading on myocardium that may be precluded by partial reloading and amenable to molecular therapeutic intervention.
Resumo:
If change over time is compared in several groups, it is important to take into account baseline values so that the comparison is carried out under the same preconditions. As the observed baseline measurements are distorted by measurement error, it may not be sufficient to include them as covariate. By fitting a longitudinal mixed-effects model to all data including the baseline observations and subsequently calculating the expected change conditional on the underlying baseline value, a solution to this problem has been provided recently so that groups with the same baseline characteristics can be compared. In this article, we present an extended approach where a broader set of models can be used. Specifically, it is possible to include any desired set of interactions between the time variable and the other covariates, and also, time-dependent covariates can be included. Additionally, we extend the method to adjust for baseline measurement error of other time-varying covariates. We apply the methodology to data from the Swiss HIV Cohort Study to address the question if a joint infection with HIV-1 and hepatitis C virus leads to a slower increase of CD4 lymphocyte counts over time after the start of antiretroviral therapy.
Resumo:
AMR-Me, a C-28 methylester derivative of triterpenoid compound Amooranin isolated from Amoora rohituka stem bark and the plant has been reported to possess multitude of medicinal properties. Our previous studies have shown that AMR-Me can induce apoptosis through mitochondrial apoptotic and MAPK signaling pathways by regulating the expression of apoptosis related genes in human breast cancer MCF-7 cells. However, the molecular mechanism of AMR-Me induced apoptotic cell death remains unclear. Our results showed that AMR-Me dose-dependently inhibited the proliferation of MCF-7 and MDA-MB-231 cells under serum-free conditions supplemented with 1 nM estrogen (E2) with an IC50 value of 0.15 µM, 0.45 µM, respectively. AMR-Me had minimal effects on human normal breast epithelial MCF-10A + ras and MCF-10A cells with IC50 value of 6 and 6.5 µM, respectively. AMR-Me downregulated PI3K p85, Akt1, and p-Akt in an ERα-independent manner in MCF-7 cells and no change in expression levels of PI3K p85 and Akt were observed in MDA-MB-231 cells treated under similar conditions. The PI3K inhibitor LY294002 suppressed Akt activation similar to AMR-Me and potentiated AMR-Me induced apoptosis in MCF-7 cells. EMSA revealed that AMR-Me inhibited nuclear factor-kappaB (NF-κB) DNA binding activity in MDA-MB-231 cells in a time-dependent manner and abrogated EGF induced NF-κB activation. From these studies we conclude that AMR-Me decreased ERα expression and effectively inhibited Akt phosphorylation in MCF-7 cells and inactivate constitutive nuclear NF-κB and its regulated proteins in MDA-MB-231 cells. Due to this multifactorial effect in hormone-dependent and independent breast cancer cells AMR-Me deserves attention for use in breast cancer prevention and therapy
Resumo:
BACKGROUND: Renal involvement is a serious manifestation of systemic lupus erythematosus (SLE); it may portend a poor prognosis as it may lead to end-stage renal disease (ESRD). The purpose of this study was to determine the factors predicting the development of renal involvement and its progression to ESRD in a multi-ethnic SLE cohort (PROFILE). METHODS AND FINDINGS: PROFILE includes SLE patients from five different United States institutions. We examined at baseline the socioeconomic-demographic, clinical, and genetic variables associated with the development of renal involvement and its progression to ESRD by univariable and multivariable Cox proportional hazards regression analyses. Analyses of onset of renal involvement included only patients with renal involvement after SLE diagnosis (n = 229). Analyses of ESRD included all patients, regardless of whether renal involvement occurred before, at, or after SLE diagnosis (34 of 438 patients). In addition, we performed a multivariable logistic regression analysis of the variables associated with the development of renal involvement at any time during the course of SLE.In the time-dependent multivariable analysis, patients developing renal involvement were more likely to have more American College of Rheumatology criteria for SLE, and to be younger, hypertensive, and of African-American or Hispanic (from Texas) ethnicity. Alternative regression models were consistent with these results. In addition to greater accrued disease damage (renal damage excluded), younger age, and Hispanic ethnicity (from Texas), homozygosity for the valine allele of FcgammaRIIIa (FCGR3A*GG) was a significant predictor of ESRD. Results from the multivariable logistic regression model that included all cases of renal involvement were consistent with those from the Cox model. CONCLUSIONS: Fcgamma receptor genotype is a risk factor for progression of renal disease to ESRD. Since the frequency distribution of FCGR3A alleles does not vary significantly among the ethnic groups studied, the additional factors underlying the ethnic disparities in renal disease progression remain to be elucidated.
Resumo:
OBJECTIVE Caesarean section (CS) rates have risen over the past two decades. The aim of this observational study was to identify time-dependent variations in CS and vaginal delivery rates over a period of 11 years. METHOD All deliveries (13,701 deliveries during the period 1999-2009) at the University Women's Hospital Bern were analysed using an internationally standardised and approved ten-group classification system. Caesarean sections on maternal request (CSMR) were evaluated separately. RESULTS We detected an overall CS rate of 36.63% and an increase in the CS rate over time (p <0.001). Low-risk profile groups were the two largest populations and displayed low CS rates, with significantly decreasing relative size over time. The relative size of groups with induced labour increased significantly, but this did not have an impact on the overall CS rate. Pregnancies complicated by breech position, multiple pregnancies and abnormal lies did not have an impact on overall CS rate. The biggest contributor to a high CS rate was preterm delivery and the existence of a uterine scar from a previous CS. CSMR was 1.45% and did not have an impact on the overall CS rate. CONCLUSION The observational study identified wide variations in caesarean section and vaginal delivery rates across the groups over time, and a shift towards high-risk populations was noted. The biggest contributors to high CS rates were identified; namely, previous uterine scar and preterm delivery. Interventions aiming to reduce CS rates are planned.
Resumo:
: Noncommunicable diseases (NCDs) account for a growing burden of morbidity and mortality among people living with HIV in low- and middle-income countries (LMICs). HIV infection and antiretroviral therapy interact with NCD risk factors in complex ways, and research into this "web of causation" has so far been largely based on data from high-income countries. However, improving the understanding, treatment, and prevention of NCDs in LMICs requires region-specific evidence. Priority research areas include: (1) defining the burden of NCDs among people living with HIV, (2) understanding the impact of modifiable risk factors, (3) evaluating effective and efficient care strategies at individual and health systems levels, and (4) evaluating cost-effective prevention strategies. Meeting these needs will require observational data, both to inform the design of randomized trials and to replace trials that would be unethical or infeasible. Focusing on Sub-Saharan Africa, we discuss data resources currently available to inform this effort and consider key limitations and methodological challenges. Existing data resources often lack population-based samples; HIV-negative, HIV-positive, and antiretroviral therapy-naive comparison groups; and measurements of key NCD risk factors and outcomes. Other challenges include loss to follow-up, competing risk of death, incomplete outcome ascertainment and measurement of factors affecting clinical decision making, and the need to control for (time-dependent) confounding. We review these challenges and discuss strategies for overcoming them through augmented data collection and appropriate analysis. We conclude with recommendations to improve the quality of data and analyses available to inform the response to HIV and NCD comorbidity in LMICs.
Resumo:
Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.
Resumo:
Since no single experimental or modeling technique provides data that allow a description of transport processes in clays and clay minerals at all relevant scales, several complementary approaches have to be combined to understand and explain the interplay between transport relevant phenomena. In this paper molecular dynamics simulations (MD) were used to investigate the mobility of water in the interlayer of montmorillonite (Mt), and to estimate the influence of mineral surfaces and interlayer ions on the water diffusion. Random Walk (RW) simulations based on a simplified representation of pore space in Mt were used to estimate and understand the effect of the arrangement of Mt particles on the meso- to macroscopic diffusivity of water. These theoretical calculations were complemented with quasielastic neutron scattering (QENS) measurements of aqueous diffusion in Mt with two pseudo-layers of water performed at four significantly different energy resolutions (i.e. observation times). The size of the interlayer and the size of Mt particles are two characteristic dimensions which determine the time dependent behavior of water diffusion in Mt. MD simulations show that at very short time scales water dynamics has the characteristic features of an oscillatory motion in the cage formed by neighbors in the first coordination shell. At longer time scales, the interaction of water with the surface determines the water dynamics, and the effect of confinement on the overall water mobility within the interlayer becomes evident. At time scales corresponding to an average water displacement equivalent to the average size of Mt particles, the effects of tortuosity are observed in the meso- to macroscopic pore scale simulations. Consistent with the picture obtained in the simulations, the QENS data can be described using a (local) 3D diffusion at short observation times, whereas at sufficiently long observation times a 2D diffusive motion is clearly observed. The effects of tortuosity measured in macroscopic tracer diffusion experiments are in qualitative agreement with RW simulations. By using experimental data to calibrate molecular and mesoscopic theoretical models, a consistent description of water mobility in clay minerals from the molecular to the macroscopic scale can be achieved. In turn, simulations help in choosing optimal conditions for the experimental measurements and the data interpretation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.
Resumo:
Metastasis is the ultimate cause for the majority of cancer-related deaths. The forkhead box transcription factor FOXC2 is known to be involved in regulating metastasis as well as a variety of developmental processes, including the formation of lymphatic and cardiovascular systems. Previous studies have shown that FOXC2 protein is localized either in the nucleus and/or in the cytoplasm of human breast tumor cells. This pattern of localization is similar to that of another forkhead family member, FOXO3a. Additionally, localization of FOXO3a is known to be differentially regulated by upstream kinase AKT. Therefore, I investigated whether FOXC2 localization could also be regulated by upstream kinases. Analysis of FOXC2 protein sequence revealed two potential phosphorylation sites for GSK-3β. Furthermore, inhibition of GSK-3βsignificantly reduces FOXC2 protein. In addition, exposure of HMLE Twist cells expressing endogenous FOXC2 to the GSK-3β inhibitor, TWS119, results in accumulation of FOXC2 protein in the cytoplasm with concomitant decrease in the nucleus in a time-dependent manner. Furthermore, continued treatment with TWS119 eventually induces epithelial morphology and decreased stem cell properties including sphere formation in these cells. Further characterization of FOXC2- GSK-3β interaction and the associated signaling cascade are necessary to determine the effect of FOXC2 phosphorylation by GSK-3β on EMT and metastasis.
Resumo:
The determination of size as well as power of a test is a vital part of a Clinical Trial Design. This research focuses on the simulation of clinical trial data with time-to-event as the primary outcome. It investigates the impact of different recruitment patterns, and time dependent hazard structures on size and power of the log-rank test. A non-homogeneous Poisson process is used to simulate entry times according to the different accrual patterns. A Weibull distribution is employed to simulate survival times according to the different hazard structures. The current study utilizes simulation methods to evaluate the effect of different recruitment patterns on size and power estimates of the log-rank test. The size of the log-rank test is estimated by simulating survival times with identical hazard rates between the treatment and the control arm of the study resulting in a hazard ratio of one. Powers of the log-rank test at specific values of hazard ratio (≠1) are estimated by simulating survival times with different, but proportional hazard rates for the two arms of the study. Different shapes (constant, decreasing, or increasing) of the hazard function of the Weibull distribution are also considered to assess the effect of hazard structure on the size and power of the log-rank test. ^
Resumo:
In this dissertation, I discovered that function of TRIM24 as a co-activator of ERα-mediated transcriptional activation is dependent on specific histone modifications in tumorigenic human breast cancer-derived MCF7 cells. In the first part, I proved that TRIM24-PHD finger domain, which recognizes unmethylated histone H3 lysine K4 (H3K4me0), is critical for ERα-regulated transcription. Therefore, when LSD1-mediated demethylation of H3K4 is inhibited, activation of TRIM24-regulated ERα target genes is greatly impaired. Importantly, I demonstrated that TRIM24 and LSD1 are cyclically recruited to estrogen responsive elements (EREs) in a time-dependent manner upon estrogen induction, and depletion of their expression exert corresponding time-dependent effect on target gene activation. I also identified that phosphorylation of histone H3 threonine T6 disrupts TRIM24 from binding to the chromatin and from activating ERα-regulated targets. In the second part, I revealed that TRIM24 depletion has additive effect to LSD1 inhibitor- and Tamoxifen-mediated reduction in survival and proliferation in breast cancer cells.
Resumo:
The analysis of time-dependent data is an important problem in many application domains, and interactive visualization of time-series data can help in understanding patterns in large time series data. Many effective approaches already exist for visual analysis of univariate time series supporting tasks such as assessment of data quality, detection of outliers, or identification of periodically or frequently occurring patterns. However, much fewer approaches exist which support multivariate time series. The existence of multiple values per time stamp makes the analysis task per se harder, and existing visualization techniques often do not scale well. We introduce an approach for visual analysis of large multivariate time-dependent data, based on the idea of projecting multivariate measurements to a 2D display, visualizing the time dimension by trajectories. We use visual data aggregation metaphors based on grouping of similar data elements to scale with multivariate time series. Aggregation procedures can either be based on statistical properties of the data or on data clustering routines. Appropriately defined user controls allow to navigate and explore the data and interactively steer the parameters of the data aggregation to enhance data analysis. We present an implementation of our approach and apply it on a comprehensive data set from the field of earth bservation, demonstrating the applicability and usefulness of our approach.
Resumo:
A local proper orthogonal decomposition (POD) plus Galerkin projection method was recently developed to accelerate time dependent numerical solvers of PDEs. This method is based on the combined use of a numerical code (NC) and a Galerkin sys- tem (GS) in a sequence of interspersed time intervals, INC and IGS, respectively. POD is performed on some sets of snapshots calculated by the numerical solver in the INC inter- vals. The governing equations are Galerkin projected onto the most energetic POD modes and the resulting GS is time integrated in the next IGS interval. The major computa- tional e®ort is associated with the snapshots calculation in the ¯rst INC interval, where the POD manifold needs to be completely constructed (it is only updated in subsequent INC intervals, which can thus be quite small). As the POD manifold depends only weakly on the particular values of the parameters of the problem, a suitable library can be con- structed adapting the snapshots calculated in other runs to drastically reduce the size of the ¯rst INC interval and thus the involved computational cost. The strategy is success- fully tested in (i) the one-dimensional complex Ginzburg-Landau equation, including the case in which it exhibits transient chaos, and (ii) the two-dimensional unsteady lid-driven cavity problem