919 resultados para Thyroid Hormones


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coactivators previously implicated in ligand-dependent activation functions by thyroid hormone receptor (TR) include p300 and CREB-binding protein (CBP), the steroid receptor coactivator-1 (SRC-1)-related family of proteins, and the multicomponent TR-associated protein (TRAP) complex. Here we show that two positive cofactors (PC2 and PC4) derived from the upstream stimulatory activity (USA) cofactor fraction act synergistically to mediate thyroid hormone (T3)-dependent activation either by TR or by a TR-TRAP complex in an in vitro system reconstituted with purified factors and DNA templates. Significantly, the TRAP-mediated enhancement of activation by TR does not require the TATA box-binding protein-associated factors of TFIID. Furthermore, neither the pleiotropic coactivators CBP and p300 nor members of the SRC-1 family were detected in either the TR-TRAP complex or the other components of the in vitro assay system. These results show that activation by TR at the level of naked DNA templates is enhanced by cooperative functions of the TRAP coactivators and the general coactivators PC2 and PC4, and they further indicate a potential functional redundancy between TRAPs and TATA box-binding protein-associated factors in TFIID. In conjunction with earlier studies on other nuclear receptor-interacting cofactors, the present study also suggests a multistep pathway, involving distinct sets of cofactors, for activation of hormone responsive genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibian metamorphosis is marked by dramatic, thyroid hormone (TH)-induced changes involving gene regulation by TH receptor (TR). It has been postulated that TR-mediated gene regulation involves chromatin remodeling. In the absence of ligand, TR can repress gene expression by recruiting a histone deacetylase complex, whereas liganded TR recruits a histone acetylase complex for gene activation. Earlier studies have led us to propose a dual function model for TR during development. In premetamorphic tadpoles, unliganded TR represses transcription involving histone deacetylation. During metamorphosis, endogenous TH allows TR to activate gene expression through histone acetylation. Here using chromatin immunoprecipitation assay, we directly demonstrate TR binding to TH response genes constitutively in vivo in premetamorphic tadpoles. We further show that TH treatment leads to histone deacetylase release from TH response gene promoters. Interestingly, in whole animals, changes in histone acetylation show little correlation with the expression of TH response genes. On the other hand, in the intestine and tail, where TH response genes are known to be up-regulated more dramatically by TH than in most other organs, we demonstrate that TH treatment induces gene activation and histone H4 acetylation. These data argue for a role of histone acetylation in transcriptional regulation by TRs during amphibian development in some tissues, whereas in others changes in histone acetylation levels may play no or only a minor role, supporting the existence of important alternative mechanisms in gene regulation by TR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transformation of rat thyroid cells with polyoma virus middle T antigen results in loss of the thyroid-differentiated phenotype, measured as the expression of the thyroglobulin (Tg), thyroperoxidase (TPO), and sodium/iodide symporter (NIS) genes. Among the transcription factors involved in the regulation of these genes, TTF-1 and TTF-2 were still detected at nearly wild-type levels, while a specific loss of the paired domain transcription factor Pax8 was observed. In this study, we used the PCPy cell line as a model system to study the role of Pax8 in thyroid differentiation. We demonstrate that the reintroduction of Pax8 in PCPy cells is sufficient to activate expression of the endogenous genes encoding thyroglobulin, thyroperoxidase, and sodium/iodide symporter. Thus, this cell system provides direct evidence for the ability of Pax8 to activate transcription of thyroid-specific genes at their chromosomal locus and strongly suggests a fundamental role of this transcription factor in the maintenance of functional differentiation in thyroid cells. Moreover, we show that Pax8 and TTF-1 cooperate in the activation of the thyroglobulin promoter and that additional thyroid-specific mechanism(s) are involved in such a cooperation. To identify the Pax8 domain able to mediate the specific activation of the thyroglobulin promoter, we transfected in PCPy cells three different Pax8 isoforms. The results of such experiments indicate that for the transcriptional activation of thyroid-specific genes, Pax8 uses an as yet unidentified functional domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with mutations in the thyroid hormone receptor β (TRβ) gene manifest resistance to thyroid hormone (RTH), resulting in a constellation of variable phenotypic abnormalities. To understand the molecular basis underlying the action of mutant TRβ in vivo, we generated mice with a targeted mutation in the TRβ gene (TRβPV; PV, mutant thyroid hormone receptor kindred PV) by using homologous recombination and the Cre/loxP system. Mice expressing a single PVallele showed the typical abnormalities of thyroid function found in heterozygous humans with RTH. Homozygous PV mice exhibit severe dysfunction of the pituitary–thyroid axis, impaired weight gains, and abnormal bone development. This phenotype is distinct from that seen in mice with a null mutation in the TRβ gene. Importantly, we identified abnormal expression patterns of several genes in tissues of TRβPV mice, demonstrating the interference of the mutant TR with the gene regulatory functions of the wild-type TR in vivo. These results show that the actions of mutant and wild-type TRβ in vivo are distinct. This model allows further study of the molecular action of mutant TR in vivo, which could lead to better treatment for RTH patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To elucidate the role of thyroid hormone receptors (TRs) α1 and β in the development of hearing, cochlear functions have been investigated in mice lacking TRα1 or TRβ. TRs are ligand-dependent transcription factors expressed in the developing organ of Corti, and loss of TRβ is known to impair hearing in mice and in humans. Here, TRα1-deficient (TRα1−/−) mice are shown to display a normal auditory-evoked brainstem response, indicating that only TRβ, and not TRα1, is essential for hearing. Because cochlear morphology was normal in TRβ−/− mice, we postulated that TRβ regulates functional rather than morphological development of the cochlea. At the onset of hearing, inner hair cells (IHCs) in wild-type mice express a fast-activating potassium conductance, IK,f, that transforms the immature IHC from a regenerative, spiking pacemaker to a high-frequency signal transmitter. Expression of IK,f was significantly retarded in TRβ−/− mice, whereas the development of the endocochlear potential and other cochlear functions, including mechanoelectrical transduction in hair cells, progressed normally. TRα1−/− mice expressed IK,f normally, in accord with their normal auditory-evoked brainstem response. These results establish that the physiological differentiation of IHCs depends on a TRβ-mediated pathway. When defective, this may contribute to deafness in congenital thyroid diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Juvenile hormones (JH), a sesquiterpenoid group of ligands that regulate developmental transitions in insects, bind to the nuclear receptor ultraspiracle (USP). In fluorescence-based binding assays, USP protein binds JH III and JH III acid with specificity, adopting for each ligand a different final conformational state. JH III treatment of Saccharomyces cerevisiae expressing a LexA-USP fusion protein stabilizes an oligomeric association containing this protein, as detected by formation of a protein–DNA complex, and induces USP-dependent transcription in a reporter assay. We propose that regulation of morphogenetic transitions in invertebrates involves binding of JH or JH-like structures to USP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classic view for hypothalamic regulation of anterior pituitary (AP) hormone secretion holds that release of each AP hormone is controlled specifically by a corresponding hypothalamic-releasing hormone (HRH). In this scenario, binding of a given HRH (thyrotropin-, growth hormone-, corticotropin-, and luteinizing hormone-releasing hormones) to specific receptors in its target cell increases the concentration of cytosolic Ca2+ ([Ca2+]i), thereby selectively stimulating the release of the appropriate hormone. However, “paradoxical” responses of AP cells to the four well-established HRHs have been observed repeatedly with both in vivo and in vitro systems, raising the possibility of functional overlap between the different AP cell types. To explore this possibility, we evaluated the effects of HRHs on [Ca2+]i in single AP cells identified immunocytochemically by the hormone they stored. We found that each of the five major AP cell types contained discrete subpopulations that were able to respond to several HRHs. The relative abundance of these multi-responsive cells was 59% for lactotropes, 33% for thyrotropes, and in the range of 47–55% for gonadotropes, corticotropes, and somatotropes. Analysis of prolactin release from single living cells revealed that each of the four HRHs tested were able to induce hormone release from a discrete lactotrope subpopulation, the size of which corresponded closely to that in which [Ca2+]i changes were induced by the same secretagogues. When viewed as a whole, our diverse functional measurements of multi-responsiveness suggest that hypothalamic control of pituitary function is more complicated than previously envisioned. Moreover, they provide a cellular basis for the so-called “paradoxical” behavior of pituitary cells to hypothalamic hypophysiotropic agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With assays of hormone-sensitive behaviors, it is possible to demonstrate both direct and indirect actions of genes on mammalian social behaviors. Direct effects of estrogen receptor gene expression and progesterone receptor gene expression figure prominently in well analyzed neuroendocrine mechanisms for sex behavior, operating through a neural circuit that has been delineated. Indirect effects, notably the consequences of sexual differentiation, display complex dependencies. In a human condition, Kallmann syndrome, the data show a clear, indirect genetic influence on an important human social behavior, in which damage at chromosome Xp-22.3 works through at least six discrete steps to affect libido. Altogether, simplistic extrapolations from lower animals, especially during brief summaries for nonscientists, do not appear justified as we discover and conceptualize genetic influences on mammalian brain and behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two important features of amphibian metamorphosis are the sequential response of tissues to different concentrations of thyroid hormone (TH) and the development of the negative feedback loop between the pituitary and the thyroid gland that regulates TH synthesis by the thyroid gland. At the climax of metamorphosis in Xenopus laevis (when the TH level is highest), the ratio of the circulating precursor thyroxine (T4) to the active form 3,5,3′-triiodothyronine (T3) in the blood is many times higher than it is in tissues. This difference is because of the conversion of T4 to T3 in target cells of the tadpole catalyzed by the enzyme type II iodothyronine deiodinase (D2) and the local effect (cell autonomy) of this activity. Limb buds and tails express D2 early and late in metamorphosis, respectively, correlating with the time that these organs undergo TH-induced change. T3 is required to complete metamorphosis because the peak concentration of T4 that is reached at metamorphic climax cannot induce the final morphological changes. At the climax of metamorphosis, D2 expression is activated specifically in the anterior pituitary cells that express the genes for thyroid-stimulating hormone but not in the cells that express proopiomelanocortin. Physiological concentrations of T3 but not T4 can suppress thyrotropin subunit β gene expression. The timing and the remarkable specificity of D2 expression in the thyrotrophs of the anterior pituitary coupled with the requirement for locally synthesized T3 strongly support a role for D2 in the onset of the negative feedback loop at the climax of metamorphosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental perturbations that increase plasma thyroid hormone (T3) concentrations also profoundly affect female reproductive behavior and physiology. We explored whether these effects were mediated by interactions between T3 receptor (TR) and estrogen receptor (ER). This hypothesis was of interest because the half-site of a consensus T3 response element DNA sequence is identical to an ER response element (ERE), and TRs bind to a consensus ERE. Molecular data presented in the accompanying paper [Zhu, Y.-S., Yen, P.M., Chin, W.W.& Pfaff, D.W. (1996) Proc. Natl. Acad. Sci. USA 93, 12587-12592] demonstrate that TRs and ERs are both present in rat hypothalamic nuclear extracts and that both can bind to the promoter the hypothalamic gene preproenkephalin and that interations between liganded TRs and ERs affect preproenkephalin transcription. In this paper, we show that molecular interactions between TRs and ERs are sufficient to mediate environmental effects on estrogen-controlled reproductive behavior. Ovariectomized (OVX) rats treated with high doses of T3 showed significantly lower levels of lordosis behavior in response to estradiol benzoate (EB) compared with OVX females treated with EB alone. Conversely, thyroidectomized/OVX females treated with EB showed significantly greater levels of lordosis behavior compared with OVX females treated with EB, showing the effect of endogenous T3. Thyroid hormone interference with EB-induced behavior could not be explained by a reduction in plasma E2 concentrations or by a general reduction in responsiveness of EB-sensitive tissues. Moreover, numbers of hypothalamic ER-immunoreactive cells increased dramatically following T3 treatment. These data suggest that T3 may reduce EB-dependent sexual behavior through interactions between TR and ER in the nuclei of behaviorally relevant hypothalamic neurons, envisioning for the first time a functional consequence of interactions between two nuclear hormone receptors in brain. These results also open up the possibility of molecular interactions on DNA encoding environmental signals, a new field for the study of neuronal integration.