862 resultados para Thermal hydrolysis
Resumo:
The Brazil nut (Bertholletia excelsea H. B. K.) is noteworthy for its high content of lipids and proteins of elevated biological value and these factors justify the need for further research and incentives for the manufacturing of new trade products. In the present study we sought new forms of technological use of these nuts by the food industry, through their processing as flour, with no alteration in its energy content. The results after its elaboration showed a product with high energy value (431.48 kcal.100 g-1), protein content of 45.92 g.100 g-1, and fiber of 17.14%. The thermal analyses indicate that the introduction of another protein component, such as soy protein isolate, does not alter the reactions or thermal behavior. On the other hand, morphological analyses revealed granular structures similar to the structure of globular proteins. It was observed that after processing to obtain the flour, the product maintains its protein-energy content, as well as its characteristics when subjected to high temperatures.
Resumo:
The aging process of alcoholic beverages is generally conducted in wood barrels made with species from Quercus sp. Due to the high cost and the lack of viability of commercial production of these trees in Brazil, there is demand for new alternatives to using other native species and the incorporation of new technologies that enable greater competitiveness of sugar cane spirit aged in Brazilian wood. The drying of wood, the thermal treatment applied to it, and manufacturing techniques are important tools in defining the sensory quality of alcoholic beverages after being placed in contact with the barrels. In the thermal treatment, several compounds are changed by the application of heat to the wood and various studies show the compounds are modified, different aromas are developed, there is change in color, and beverages achieve even more pleasant taste, when compared to non-treated woods. This study evaluated the existence of significant differences between hydro-alcoholic solutions of sugar cane spirits elaborated from different species of thermo-treated and non-treated wood in terms of aroma. An acceptance test was applied to evaluate the solutions preferred by tasters under specific test conditions.
Resumo:
In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v) in water and chitosan (2% w/v) in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w) to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100) of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.
Resumo:
In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG) and Differential Scanning Calorimetry (DSC) analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene), BHA (2, 3-tert-butyl-4-methoxyphenol), TBHQ (tertiary butyl hydroquinone), PG (propyl gallate) - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate) additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.
Resumo:
Baru (Dipteryx alata Vog.), a species of legume found in the Brazilian savannas, was investigated in this study for the composition of its flesh and seed. Thermal analyses, Thermogravimetry (TG), and Differential Scanning Calorimetry (DSC) were used to investigate the proteins in defatted meal, concentrate, and protein isolate. The protein concentrate was extracted at pH 10, followed by a precipitation at the isoelectric point to obtain the isolate that was spray dried. The thermogravimetric curves were obtained under a nitrogen atmosphere with a 100 mL/minutes flow. The initial, final and peak temperatures and mass loss were analyzed. Within the performed temperature ranges studied, the defatted meal and concentrate presented four steps of mass loss, while the isolate showed only two steps. The protein content of defatted meal from Baru nuts was higher than that of the isolate. On the other hand, there was a reduction in enthalpy, which suggests that the process applied to obtain the baru concentrate and isolate led to protein denaturation.
Resumo:
Food processes must ensure safety and high-quality products for a growing demand consumer creating the need for better knowledge of its unit operations. The Computational Fluid Dynamics (CFD) has been widely used for better understanding the food thermal processes, and it is one of the safest and most frequently used methods for food preservation. However, there is no single study in the literature describing thermal process of liquid foods in a brick shaped package. The present study evaluated such process and the influence of its orientation on the process lethality. It demonstrated the potential of using CFD to evaluate thermal processes of liquid foods and the importance of rheological characterization and convection in thermal processing of liquid foods. It also showed that packaging orientation does not result in different sterilization values during thermal process of the evaluated fluids in the brick shaped package.
Resumo:
Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG), sodium carboxymethyl cellulose (SCMC), and carrageenan (CAR) at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v) on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP) and the scanning electron microscopy (SEM) of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG) had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively) modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC) greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively) modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR) did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.
Resumo:
During enzymatic process of cheese manufacturing, rennin cleaves κ-casein releasing two fractions: para-κ-casein and glycomacropeptide (GMP), which remains soluble in milk whey. GMP is a peptide with structural particularities such as chain carbohydrates linked to specific threonine residues, to which a great variety of biological activities is attributed. Worldwide cheese production has increased generating high volumes of milk whey that could be efficiently used as an alternative source of high quality peptide or protein in foodstuff formulations. In order to evaluate isolation and recovery on whey GMP by means of thermal treatment (90 °C), 18 samples (2 L each) of sweet whey, resuspended commercial whey (positive control) and acid whey (negative control) were processed. Indirect presence of GMP was verified using chemical tests and PAGE-SDS 15%. At 90 °C treated sweet whey, 14, 20 and 41 kDa bands were observed. These bands may correspond to olygomers of GMP. Peptide recovery showed an average of 1.5 g/L (34.08%). The results indicate that industrial scale GMP production is feasible; however, further research must be carried out for the biological and nutritional evaluation of GMP's incorporation to foodstuff as a supplement.
Resumo:
Technological functional properties of native and acid-thinned pinhão (seeds of Araucária angustifolia, Brazilian pine) starches were evaluated and compared to those of native and acid-thinned corn starches. The starches were hydrolyzed (3.2 mol.L-1 HCl, 44 ºC, 6 hours) and evaluated before and after the hydrolysis reaction in terms of formation, melting point and thermo-reversibility of gel starches, retrogradation (in a 30-day period and measurements every three days), paste freezing and thawing stability (after six freezing and thawing cycles), swelling power, and solubility. The results of light transmittance (%) of pastes of native and acid-thinned pinhão starches was higher (lower tendency to retrogradation) than that obtained for corn starches after similar storage period. Native pinhão starch (NPS) presented lower syneresis than native corn starch (NCS) when submitted to freeze-thaw cycles. The acid hydrolysis increased the syneresis of the two native varieties under storage at 5 ºC and after freezing and thawing cycles. The solubility of NPS was lower than that of native corn starch at 25, 50, and 70 ºC. However, for the acid-thinned pinhão starch (APS), this property was significantly higher (p < 0.05) when compared to that of acid-thinned corn starch (ACS). From the results obtained, it can be said that the acid treatment was efficient in producing a potential fat substitute from pinhão starch variety, but this ability must be further investigated.
Resumo:
The thermal inactivation of yeast isolated from spoiled Jubileu peach puree and that of polyphenoloxidase (PPO) and peroxidase (POD) in cv. Jubileu, which is widely cultivated in southern Rio Grande do Sul state, Brazil, were studied. PPO and POD were extracted using the protein powder method and submitted to partial purification by precipitation followed by dialysis. The enzymatic activity was determined measuring the increase in absorbance at 420 nm for PPO and 470 nm for POD. The yeast used in this investigation was isolated from spoiled Jubileu peach puree at 22 °Brix, with total initial microbial count of 22 × 10² UFCmL- 1. Stock cultures were maintained on potato dextrose agar (PDA) slants at 4 °C and pH 5 for later use for microbial growth. In all cases, kinetic analysis of the results suggests that the thermal inactivation was well described by a first-order kinetic model, and the temperature dependence was significantly represented by the Arrhenius law. Both enzymes were affected by heat denaturation, and PPO was more thermostable. PPO was also more thermosTable than the yeast isolated from peach puree. The D60-values were 1.53 and 1.87 min for PPO and yeast isolated from spoiled Jubileu peach puree, respectively.
Resumo:
Significant initiatives exist within the global food market to search for new, alternative protein sources with better technological, functional, and nutritional properties. Lima bean (Phaseolus lunatus L.) protein isolate was hydrolyzed using a sequential pepsin-pancreatin enzymatic system. Hydrolysis was performed to produce limited (LH) and extensive hydrolysate (EH), each with different degrees of hydrolysis (DH). The effects of hydrolysis were evaluated in vitro in both hydrolysates based on structural, functional and bioactive properties. Structural properties analyzed by electrophoretic profile indicated that LH showed residual structures very similar to protein isolate (PI), although composed of mixtures of polypeptides that increased hydrophobic surface and denaturation temperature. Functionality of LH was associated with amino acid composition and hydrophobic/hydrophilic balance, which increased solubility at values close to the isoelectric point. Foaming and emulsifying activity index values were also higher than those of PI. EH showed a structure composed of mixtures of polypeptides and peptides of low molecular weight, whose intrinsic hydrophobicity and amino acid profile values were associated with antioxidant capacity, as well as inhibiting angiotensin-converting enzyme. The results obtained indicated the potential of Phaseolus lunatus hydrolysates to be incorporated into foods to improve techno-functional properties and impart bioactive properties.
Resumo:
The marine bioprocessing industry offers great potential to utilize byproducts for fish meal replacement in aquafeeds. Jumbo squid is an important fishery commodity in Mexico, but only the mantle is marketed. Head, fins, guts and tentacles are discarded in spite of being protein-rich byproducts. This study evaluated the use of two jumbo squid byproduct hydrolysates obtained by acid-enzymatic hydrolysis (AEH) and by autohydrolysis (AH) as ingredients in practical diets for shrimp. The hydrolysates were included at levels of 2.5 and 5.0% of the diet dry weight in four practical diets, including a control diet without hydrolysate. Shrimp growth and survival were not significantly affected by the dietary treatments. Postharvest quality of abdominal muscle was evaluated in terms of proximate composition and sensory evaluation. Significantly higher crude protein was observed in the muscle of shrimp fed the highest hydrolysate levels, AH 5% (204.8 g kg- 1) or AEH 5% (201.3 g kg- 1). Sensory analysis of cooked muscle showed significant differences for all variables evaluated: color, odor, flavor, and firmness. It was concluded that Jumbo squid byproducts can be successfully processed by autohydrolysis or acid-enzymatic hydrolysis, and that up to 5.0% of the hydrolysates can be incorporated into shrimp diets without affecting growth or survival.
Resumo:
AbstractThermal processing and production practices used in vegetables can cause changes in their phytochemical contents. Eggplant is characterized by its high antioxidant content. The objective of this work was to determine levels of anthocyanins, polyphenols, and flavonoids and antioxidant capacity in organically and conventionally grown eggplant prepared fresh or subjected to one of three thermal preparation methods: boiling, baking or steaming. The soluble and hydrolyzable polyphenols and flavonoids content were quantified by Folin-Ciocalteu and Aluminum chloride methods, respectively. Anthocyanins were quantified according to the pH differential method. Antioxidant capacity was determined by DPPH and ORAC methods. The results showed differences between organic and conventional eggplant for some variables although cultivation method did not have a consistent effect. Hydrolysable polyphenol content was greater, and soluble and hydrolysable antioxidant capacities were higher in organically grown eggplant, while anthocyanin content was greater in conventionally grown eggplant. Fresh eggplant produced under conventional cultivation had a much greater content of anthocyanins compared to that of other cultivation method-thermal treatment combination. In general, steamed eggplant contained higher total polyphenol and flavonoid levels as well as greater antioxidant capacity. Steamed eggplant from both conventional and organic systems also had high amounts of anthocyanins compared to other thermal treatments.
Resumo:
Abstract The objective of this work was to evaluate the antioxidant activity of protein hydrolysates obtained by the enzymatic hydrolysis of okara using an endopeptidase (Alcalase) and exopeptidase (Flavourzyme). The reaction was monitored by the pH-stat procedure in which five aliquots were collected during the hydrolysis by each enzyme, corresponding to different degrees of hydrolysis (DH). The antioxidant activities of the aliquots were evaluated by the ABTS, DPPH and FRAP methods. For the hydrolysates obtained using Alcalase, the antioxidant activities increased from: 68.6 to 99.5% (ABTS), 14.5 to 17.7% (DPPH) and 222.6 to 684.9 µM Trolox (FRAP), when the DH varied from 0 to 33.6%. With respect to Flavourzyme, the results were: 67.2 to 88.2% (ABTS), 9.5 to 18.5% (DPPH) and 168.0 to 360.3 µM Trolox (FRAP), when the DH increased up to 5.8%. The results showed that the protein hydrolysates had antioxidant capacities, which were influenced by the degree of hydrolysis and the type of enzyme.
Resumo:
The accelerating adoption of electrical technologies in vehicles over the recent years has led to an increase in the research on electrochemical energy storage systems, which are among the key elements in these technologies. The application of electrochemical energy storage systems for instance in hybrid electrical vehicles (HEVs) or hybrid mobile working machines allows tolerating high power peaks, leading to an opportunity to downsize the internal combustion engine and reduce fuel consumption, and therefore, CO2 and other emissions. Further, the application of electrochemical energy storage systems provides an option of kinetic and potential energy recuperation. Presently, the lithium-ion (Li-ion) battery is considered the most suitable electrochemical energy storage type in HEVs and hybrid mobile working machines. However, the intensive operating cycle produces high heat losses in the Li-ion battery, which increase its operating temperature. The Li-ion battery operation at high temperatures accelerates the ageing of the battery, and in the worst case, may lead to a thermal runaway and fire. Therefore, an appropriate Li-ion battery cooling system should be provided for the temperature control in applications such as HEVs and mobile working machines. In this doctoral dissertation, methods are presented to set up a thermal model of a single Li-ion cell and a more complex battery module, which can be used if full information about the battery chemistry is not available. In addition, a non-destructive method is developed for the cell thermal characterization, which allows to measure the thermal parameters at different states of charge and in different points of cell surface. The proposed models and the cell thermal characterization method have been verified by experimental measurements. The minimization of high thermal non-uniformity, which was detected in the pouch cell during its operation with a high C-rate current, was analysed by applying a simplified pouch cell 3D thermal model. In the analysis, heat pipes were incorporated into the pouch cell cooling system, and an optimization algorithm was generated for the estimation of the optimalplacement of heat pipes in the pouch cell cooling system. An analysis of the application of heat pipes to the pouch cell cooling system shows that heat pipes significantly decrease the temperature non-uniformity on the cell surface, and therefore, heat pipes were recommended for the enhancement of the pouch cell cooling system.