932 resultados para Texas. Agricultural and mechanical college.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nondestructive techniques are extensively researched for the measurement of physical properties of fruits related to quality. Optical properties can be applied mainly in the detection of those quality features which are related to the chemical composition of the fruit, color (in the VIS region) or chemical constituents (sugar, in the MR region) being the most important. The most relevant mechanical property of fruits is consistency, generally called firmness, and to date only techniques which are able to measure the mechanical properties of the fruit bulk tissue are used for its prediction. Fruits can be modelled as elastic bodies, or at least as partially elastic. Therefore, the measurement of some elastic constants of the fruit can be used for the evaluation of its firmness. The differences in the response to loading are relevant in studying a) fruit firmness and b) bruising susceptibility. Both have been modelled for selected fruit species and varieties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tx Doc no.: Z, TA245.7, B873, no. 950.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plates printed on both sides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Issued Apr. 1978.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal conductivity and mechanical strength of gypsum and gypsum-cellulose plates made from commercial plaster by a new process have been measured. The gypsum parts made by the new process, 'novogesso', have high mechanical strength and low porosity. The gypsum strength derives from both the high aspect ratio of the gypsum crystals and the strong adhesion among them by nano-flat layers of confined water, which behaves as supercooled water. Another contribution to the strength comes from the nano-flatness of the lateral surfaces of the gypsum single crystals. The bending and compression strengths, σB and σc, of gypsum plates prepared by this new technique can be as high as 30 and 100 MPa, respectively. The way gypsum plates have been assembled as well as their low thermal conductivity allowed for the construction of a low-cost experimental house with thermal and acoustic comfort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the stress levels at the core layer and the veneer layer of zirconia crowns (comprising an alternative core design vs. a standard core design) under mechanical/thermal simulation, and subjected simulated models to laboratory mouth-motion fatigue. The dimensions of a mandibular first molar were imported into computer-aided design (CAD) software and a tooth preparation was modeled. A crown was designed using the space between the original tooth and the prepared tooth. The alternative core presented an additional lingual shoulder that lowered the veneer bulk of the cusps. Finite element analyses evaluated the residual maximum principal stresses fields at the core and veneer of both designs under loading and when cooled from 900 degrees C to 25 degrees C. Crowns were fabricated and mouth-motion fatigued, generating master Weibull curves and reliability data. Thermal modeling showed low residual stress fields throughout the bulk of the cusps for both groups. Mechanical simulation depicted a shift in stress levels to the core of the alternative design compared with the standard design. Significantly higher reliability was found for the alternative core. Regardless of the alternative configuration, thermal and mechanical computer simulations showed stress in the alternative core design comparable and higher to that of the standard configuration, respectively. Such a mechanical scenario probably led to the higher reliability of the alternative design under fatigue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue engineering arises from the need to regenerate organs and tissues, requiring the development of scaffolds, which can provide an optimum environment for tissue growth. In this work, chitosan with different molecular weights was used to develop biodegradable 3D inverted colloidal crystals (ICC) structures for bone regeneration, exhibiting uniform pore size and interconnected network. Moreover, in vitro tests were conducted by studying the influence of the molecular weight in the degradation kinetics and mechanical properties. The production of ICC included four major stages: fabrication of microspheres; assembly into a cohesive structure, polymeric solution infiltration and microsphere removal. Chitosan’s degree of deacetylation was determined by infrared spectroscopy and molecular weight was obtained via capillary viscometry. In order to understand the effect of the molecular weight in ICC structures, the mass loss and mechanical properties were analyzed after degradation with lysozyme. Structure morphology observation before and after degradation was performed by scanning electron microscopy. Cellular adhesion and proliferation tests were carried out to evaluate ICC in vitro response. Overall, medium molecular weight ICC revealed the best balance in terms of mechanical properties, degradation rate, morphology and biological behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been a growing interest in developing news solutions for more ecologic and efficient construction, including natural, renewable and local materials, thus contributing in the search for more efficient, economic and environmentally friendly construction. Several authors have assessed the possibility of using various agricultural sub products or wastes, as part of the effort of the scientific community to find alternative and more ecologic construction materials. Corn cob is an agricultural waste from a very important worldwide crop. Natural glues are made from natural materials, non-mineral, that can be used as such or after some modifications to achieve the behaviour and performance required. Two examples of these natural glues are casein and wheat flour-based glues that were used in the present study. Boards with different compositions were manufactured, having as variables the type of glue, the dimension of the corn cob particles and the features of the pressing process. The tests boards were characterized with physical and mechanical tests, such as thermal conductivity (λ) with a ISOMET 2104 and 60 mm diameter contact probe, density (ρ) based on EN 1602:2013, surface hardness (SH) with a PCE Shore A durometer, surface resistance (SR) with a PROCEQ PT pendular sclerometer, bending behaviour (σ) based on EN 12089:2013, compression behaviour (σ10) based on EN 826:2013 and resilience (R) based on EN 1094-1:2008, with a Zwick Rowell bending equipment with 2 kN and 50 kN load cells (Fig. 1), dynamic modulus of elasticity (Ed) with a Zeus Resonance Meter equipment (Fig. 5) based on NP EN 14146:2006 and water vapour permeability (δ) based on EN 12086:2013. The various boards produced were characterized according to the tests and the ones with the best results were C8_c8 (casein glue, grain size 2,38-4,76 mm, cold pressing for 8 hours), C8_c4 (casein glue, grain size 2,38-4,76 mm, cold pressing for 4 hours), F8_h0.5 (wheat flour glue, grain size 2,38-4,76 mm, hot pressing for 0,5 hours), FEV8_h0.5 (wheat flour, egg white and vinegar glue, grain size 2,38-4,76 mm, hot pressing for 0,5 hours) and FEVH68_c4 (wheat flour, egg white, vinegar and 6 g of sodium hydroxide glue, grain size 2,38-4,76 mm, cold pressing for 4 hours). Taking into account the various boards produced and respective test results the type of glue and the pressure and pressing time are very important factors which strongly influence the final product. The results obtained confirmed the initial hypotheses that these boards have potential as a thermal and, eventually, acoustic insulation material, to use as coating or intermediate layer on walls, floors or false ceilings. This type of board has a high mechanical resistance when compared with traditional insulating materials.The integrity of these boards seems to be maintained even in higher humidity environments. However, due to biological susceptibility and sensitivity to water, they would be more adequate for application in dry interior conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of this dissertation several studies were developed resulting in submission and publication “Evaluation of mechanical soft-abrasive blasting and chemical cleaning methods on alkyd-paint graffiti made on calcareous stones” to Journal of Cultural Heritage. (http://dx.doi.org/10.101 /j.culher.2014.10.004)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interesting properties of thermoplastics elastomers can be combined with carbon nanotubes (CNT) for the development of large strain piezoresistive composites for sensor applications. Piezoresistive properties of the composites depend on CNT content, with the gauge factor increasing for concentrations around the percolation threshold, mechanical and electrical hysteresis. The SBS copolymer composition (butadiene/styrene ratio) influences the mechanical and electrical hysteresis of composites and, therefore, the piezoresistive response. This work reports on the electrical and mechanical response of CNT/SBS composites with 4%wt nanofiller content, due to the larger electromechanical response. C401 and C540 SBS copolymers with 80% and 60% butadiene content, respectively have been selected. The copolymer with larger amount of soft phase (C401) shows a rubber-like mechanical behavior, with mechanical hysteresis increasing linearly with strain until 100% strain. The copolymer with the larger amount of hard phase (C540) just shows rubber-like behavior for low strains. The piezoresistive sensibility is similar for both composites for low strains, with a GF≈ 5 for 5% strain. The electrical hysteresis shows opposite behavior than the mechanical hysteresis, increasing with strain for both composites, but with higher increase for softer copolymer, C401. The GF increases with increasing strain, but this increase is larger for composites with lower amounts of soft phase due to the distinct initial modulus and deformation of the soft and hard phases of the copolymer. The soft phase shows larger strain under a given stress than the harder phase and the conductive pathway rearrangements in the composites are different for both phases, the harder copolymer (C540) showing higher piezoresistive sensibility, GF≈ 18, for 20% strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline AlN coatings deposited on Ti-electrodes films were sputtered by using nitrogen both as reactive gas and sputtering gas, in order to obtain high purity coatings with appropriate properties to be further integrated into wear resistance coatings as a piezoelectric monitoring wear sensor. The chemical composition, the structure and the morphology of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy techniques. These measurements show the formation of highly (101), (102) and (103) oriented AlN films with good piezoelectric and mechanical properties suitable for applications in electronic devices. Through the use of lower nitrogen flow a densification of the AlN coating occurs in the microstructure, with an improvement of the crystallinity along with the increase of the hardness. Thermal stability of aluminum nitride coatings at high temperature was also examined. It was found an improvement of the piezoelectric properties of the highly (10x) oriented AlN films which became c-axis (002) oriented after annealing. The mechanical behavior after heat treatment shows an important enhancement of the surface hardness and Young’s modulus, which decrease rapidly with the increase of the indentation depth until approach constant values close to the substrate properties after annealing. Thus, thermal annealing energy promotes not only the rearrangement of Al–N network, but also the occurrence of a nitriding process of unsaturated Al atoms which cause a surface hardening of the film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento Engenharia Mecânica