956 resultados para Tax revenue estimating
Resumo:
The article describes a generalized estimating equations approach that was used to investigate the impact of technology on vessel performance in a trawl fishery during 1988-96, while accounting for spatial and temporal correlations in the catch-effort data. Robust estimation of parameters in the presence of several levels of clustering depended more on the choice of cluster definition than on the choice of correlation structure within the cluster. Models with smaller cluster sizes produced stable results, while models with larger cluster sizes, that may have had complex within-cluster correlation structures and that had within-cluster covariates, produced estimates sensitive to the correlation structure. The preferred model arising from this dataset assumed that catches from a vessel were correlated in the same years and the same areas, but independent in different years and areas. The model that assumed catches from a vessel were correlated in all years and areas, equivalent to a random effects term for vessel, produced spurious results. This was an unexpected finding that highlighted the need to adopt a systematic strategy for modelling. The article proposes a modelling strategy of selecting the best cluster definition first, and the working correlation structure (within clusters) second. The article discusses the selection and interpretation of the model in the light of background knowledge of the data and utility of the model, and the potential for this modelling approach to apply in similar statistical situations.
Resumo:
A simple stochastic model of a fish population subject to natural and fishing mortalities is described. The fishing effort is assumed to vary over different periods but to be constant within each period. A maximum-likelihood approach is developed for estimating natural mortality (M) and the catchability coefficient (q) simultaneously from catch-and-effort data. If there is not enough contrast in the data to provide reliable estimates of both M and q, as is often the case in practice, the method can be used to obtain the best possible values of q for a range of possible values of M. These techniques are illustrated with tiger prawn (Penaeus semisulcatus) data from the Northern Prawn Fishery of Australia.
Resumo:
Troxel, Lipsitz, and Brennan (1997, Biometrics 53, 857-869) considered parameter estimation from survey data with nonignorable nonresponse and proposed weighted estimating equations to remove the biases in the complete-case analysis that ignores missing observations. This paper suggests two alternative modifications for unbiased estimation of regression parameters when a binary outcome is potentially observed at successive time points. The weighting approach of Robins, Rotnitzky, and Zhao (1995, Journal of the American Statistical Association 90, 106-121) is also modified to obtain unbiased estimating functions. The suggested estimating functions are unbiased only when the missingness probability is correctly specified, and misspecification of the missingness model will result in biases in the estimates. Simulation studies are carried out to assess the performance of different methods when the covariate is binary or normal. For the simulation models used, the relative efficiency of the two new methods to the weighting methods is about 3.0 for the slope parameter and about 2.0 for the intercept parameter when the covariate is continuous and the missingness probability is correctly specified. All methods produce substantial biases in the estimates when the missingness model is misspecified or underspecified. Analysis of data from a medical survey illustrates the use and possible differences of these estimating functions.
Resumo:
James (1991, Biometrics 47, 1519-1530) constructed unbiased estimating functions for estimating the two parameters in the von Bertalanffy growth curve from tag-recapture data. This paper provides unbiased estimating functions for a class of growth models that incorporate stochastic components and explanatory variables. a simulation study using seasonal growth models indicates that the proposed method works well while the least-squares methods that are commonly used in the literature may produce substantially biased estimates. The proposed model and method are also applied to real data from tagged rack lobsters to assess the possible seasonal effect on growth.
Resumo:
We consider the problem of estimating a population size from successive catches taken during a removal experiment and propose two estimating functions approaches, the traditional quasi-likelihood (TQL) approach for dependent observations and the conditional quasi-likelihood (CQL) approach using the conditional mean and conditional variance of the catch given previous catches. Asymptotic covariance of the estimates and the relationship between the two methods are derived. Simulation results and application to the catch data from smallmouth bass show that the proposed estimating functions perform better than other existing methods, especially in the presence of overdispersion.
Resumo:
The efficiency with which a small beam trawl (1 x 0.5 m mouth) sampled postlarvae and juveniles of tiger prawns Penaeus esculentus and P, semisulcatus at night was estimated in 3 tropical seagrass communities (dominated by Thalassia hemprichii, Syringodium isoetifolium and Enhalus acoroides, respectively) in the shallow waters of the Gulf of Carpentaria in northern Australia. An area of seagrass (40 x 3 m) was enclosed by a net and the beam trawl was repeatedly hand-hauled over the substrate. Net efficiency (q) was calculated using 4 methods: the unweighted Leslie, weighted Leslie, DeLury and Maximum-likelihood (ML) methods. The Maximum-likelihood is the preferred method for estimating efficiency because it makes the fewest assumptions and is not affected by zero catches. The major difference in net efficiencies was between postlarvae (mean ML q +/- 95% confidence limits = 0.66 +/- 0.16) and juveniles of both species (mean q for juveniles in water less than or equal to 1.0 m deep = 0.47 +/- 0.05), i.e. the beam trawl was more efficient at capturing postlarvae than juveniles. There was little difference in net efficiency for P, esculentus between seagrass types (T, hemprichii versus S. isoetifolium), even though the biomass and morphologies of seagrass in these communities differed greatly (biomasses were 54 and 204 g m(-2), respectively). The efficiency of the net appeared to be the same for juveniles of the 2 species in shallow water, but was lower for juvenile P, semisulcatus at high tide when the water was deeper (1.6 to 1.9 m) (0.35 +/- 0.08). The lower efficiency near the time of high tide is possibly because the prawns are more active at high than low tide, and can also escape above the net. Factors affecting net efficiency and alternative methods of estimating net efficiency are discussed.
Resumo:
Abstract is not available.
Resumo:
Cereal grain is one of the main export commodities of Australian agriculture. Over the past decade, crop yield forecasts for wheat and sorghum have shown appreciable utility for industry planning at shire, state, and national scales. There is now an increasing drive from industry for more accurate and cost-effective crop production forecasts. In order to generate production estimates, accurate crop area estimates are needed by the end of the cropping season. Multivariate methods for analysing remotely sensed Enhanced Vegetation Index (EVI) from 16-day Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery within the cropping period (i.e. April-November) were investigated to estimate crop area for wheat, barley, chickpea, and total winter cropped area for a case study region in NE Australia. Each pixel classification method was trained on ground truth data collected from the study region. Three approaches to pixel classification were examined: (i) cluster analysis of trajectories of EVI values from consecutive multi-date imagery during the crop growth period; (ii) harmonic analysis of the time series (HANTS) of the EVI values; and (iii) principal component analysis (PCA) of the time series of EVI values. Images classified using these three approaches were compared with each other, and with a classification based on the single MODIS image taken at peak EVI. Imagery for the 2003 and 2004 seasons was used to assess the ability of the methods to determine wheat, barley, chickpea, and total cropped area estimates. The accuracy at pixel scale was determined by the percent correct classification metric by contrasting all pixel scale samples with independent pixel observations. At a shire level, aggregated total crop area estimates were compared with surveyed estimates. All multi-temporal methods showed significant overall capability to estimate total winter crop area. There was high accuracy at pixel scale (>98% correct classification) for identifying overall winter cropping. However, discrimination among crops was less accurate. Although the use of single-date EVI data produced high accuracy for estimates of wheat area at shire scale, the result contradicted the poor pixel-scale accuracy associated with this approach, due to fortuitous compensating errors. Further studies are needed to extrapolate the multi-temporal approaches to other geographical areas and to improve the lead time for deriving cropped-area estimates before harvest.
Resumo:
Background: Standard methods for quantifying IncuCyte ZOOM™ assays involve measurements that quantify how rapidly the initially-vacant area becomes re-colonised with cells as a function of time. Unfortunately, these measurements give no insight into the details of the cellular-level mechanisms acting to close the initially-vacant area. We provide an alternative method enabling us to quantify the role of cell motility and cell proliferation separately. To achieve this we calibrate standard data available from IncuCyte ZOOM™ images to the solution of the Fisher-Kolmogorov model. Results: The Fisher-Kolmogorov model is a reaction-diffusion equation that has been used to describe collective cell spreading driven by cell migration, characterised by a cell diffusivity, D, and carrying capacity limited proliferation with proliferation rate, λ, and carrying capacity density, K. By analysing temporal changes in cell density in several subregions located well-behind the initial position of the leading edge we estimate λ and K. Given these estimates, we then apply automatic leading edge detection algorithms to the images produced by the IncuCyte ZOOM™ assay and match this data with a numerical solution of the Fisher-Kolmogorov equation to provide an estimate of D. We demonstrate this method by applying it to interpret a suite of IncuCyte ZOOM™ assays using PC-3 prostate cancer cells and obtain estimates of D, λ and K. Comparing estimates of D, λ and K for a control assay with estimates of D, λ and K for assays where epidermal growth factor (EGF) is applied in varying concentrations confirms that EGF enhances the rate of scratch closure and that this stimulation is driven by an increase in D and λ, whereas K is relatively unaffected by EGF. Conclusions: Our approach for estimating D, λ and K from an IncuCyte ZOOM™ assay provides more detail about cellular-level behaviour than standard methods for analysing these assays. In particular, our approach can be used to quantify the balance of cell migration and cell proliferation and, as we demonstrate, allow us to quantify how the addition of growth factors affects these processes individually.
Resumo:
Sugarcane is a major global agricultural crop that produces significant quantities of sugar and biomass in tropical and sub-tropical regions. Over many centuries, the crop has been grown primarily for its high sugar content which traditionally contributes over 95% of the revenue derived from the crop. While the production of renewable electricity from bagasse and rum from molasses has a long history, in more recent decades significant advances have been made in the production of cogeneration products and fuel ethanol at large scale. Sugarcane biorefineries producing fuels, green chemicals, biopolymers and bio-products offer great potential for improving the profitability of sugarcane production. This paper will address the opportunities available for sugarcane biorefineries to contribute to future profitability and sustainability of the sugarcane industry.
Resumo:
Promotion of better procedures for releasing undersize fish, advocacy of catch-and-release angling, and changing minimum legal sizes are increasingly being used as tools for sustainable management of fish stocks. However without knowing the proportion of released fish that survive, the conservation value of any of these measures is uncertain. We developed a floating vertical enclosure to estimate short-term survival of released line-caught tropical and subtropical reef-associated species, and used it to compare the effectiveness of two barotrauma-relief procedures (venting and shotline releasing) on red emperor (Lutjanus sebae). Barotrauma signs varied with capture depth, but not with the size of the fish. Fish from the greatest depths (40-52 m) exhibited extreme signs less frequently than did those from intermediate depths (30-40 m), possibly as a result of swim bladder gas being vented externally through a rupture in the body wall. All but two fish survived the experiment, and as neither release technique significantly improved short-term survival of the red emperor over non-treatment we see little benefit in promoting either venting or shotline releasing for this comparatively resilient species. Floating vertical enclosures can improve short-term post-release mortality estimates as they overcome many problems encountered when constraining fish in submerged cages.
Resumo:
The PhD thesis developed an economic model as an integral part of the current Health Impact Assessment (HIA) framework. Based on a Health Production Function approach, the model showed how to estimate economic benefits of positive health gains generated by transport investment programs and transport policies. Using Australian mortality and morbidity statistics and applying econometric analysis, the case study quantified health benefits induced by transport emission abatement policies in dollar terms for the Australian households. Finally, the thesis demonstrated transferability of the economic model through two example case studies, establishing a wider application capacity of the model.
Resumo:
1. Weed eradication efforts often must be sustained for long periods owing to the existence of persistent seed banks, among other factors. Decision makers need to consider both the amount of investment required and the period over which investment must be maintained when determining whether to commit to (or continue) an eradication programme. However, a basis for estimating eradication programme duration based on simple data has been lacking. Here, we present a stochastic dynamic model that can provide such estimates. 2. The model is based upon the rates of progression of infestations from the active to the monitoring state (i.e. no plants detected for at least 12 months), rates of reversion of infestations from monitoring to the active state and the frequency distribution of time since last detection for all infestations. Isoquants that illustrate the combinations of progression and reversion parameters corresponding to eradication within different time frames are generated. 3. The model is applied to ongoing eradication programmes targeting branched broomrape Orobanche ramosa and chromolaena Chromolaena odorata. The minimum periods in which eradication could potentially be achieved were 22 and 23 years, respectively. On the basis of programme performance until 2008, however, eradication is predicted to take considerably longer for both species (on average, 62 and 248 years, respectively). Performance of the branched broomrape programme could be best improved through reducing rates of reversion to the active state; for chromolaena, boosting rates of progression to the monitoring state is more important. 4. Synthesis and applications. Our model for estimating weed eradication programme duration, which captures critical transitions between a limited number of states, is readily applicable to any weed.Aparticular strength of the method lies in its minimal data requirements. These comprise estimates of maximum seed persistence and infested area, plus consistent annual records of the detection (or otherwise) of the weed in each infestation. This work provides a framework for identifying where improvements in management are needed and a basis for testing the effectiveness of alternative tactics. If adopted, our approach should help improve decision making with regard to eradication as a management strategy.
Resumo:
Identifying the stress factors imposed on mud crab to develop stress minimisation practices for improving survival, hence increasing revenue for the industry.