491 resultados para Tasmania
Resumo:
Tectonic changes that produced a deep Tasmanian Gateway between Australia and Antarctica are widely invoked as the major mechanism for Antarctic cryosphere growth and Antarctic Circumpolar Current (ACC) development during the Eocene/Oligocene (E/O) transition (34-33 Ma). Ocean Drilling Program (ODP) Leg 189 recovered near-continuous marine sedimentary records across the E/O transition interval at four sites around Tasmania. These records are largely barren of calcareous microfossils but contain a rich record of siliceous- and organic-walled marine microfossils. In this study we integrate micropaleontological, sedimentological, geochemical, and paleomagnetic data from Site 1172 (East Tasman Plateau) to identify four distinct phases (A-D) in the E/O Tasmanian Gateway deepening that are correlative among ODP Leg 189 sites. Phase A, prior to 35.5 Ma: minor initial deepening characterized by a shallow marine prodeltaic setting with initial condensation episodes. Phase B, 35.5-33.5 Ma: increased deepening marked by the onset of major glauconitic deposition and inception of energetic bottom-water currents. Phase C, 33.5-30.2 Ma: further deepening to bathyal depths, with episodic erosion by increasingly energetic bottom-water currents. Phase D, <30.2 Ma: establishment of stable, open-ocean, warm-temperate, oligotrophic settings characterized by siliceous-carbonate ooze deposition. Our combined evidence indicates that this early Oligocene Tasmanian Gateway deepening initially produced an eastward flow of relatively warm surface waters from the Australo-Antarctic Gulf into the southwestern Pacific Ocean. This "proto-Leeuwin" current fundamentally differs from previous regional reconstructions of eastward flowing cool water (e.g., a "proto-ACC") during the early Oligocene and thereby represents an important new constraint for reconstructing regional- to global-scale dynamics for this major global change event.
Resumo:
Biodiversity loss is one of the most significant drivers of ecosystem change and is projected to continue at a rapid rate. While protected areas, such as national parks, are seen as important refuges for biodiversity, their effectiveness in stemming biodiversity decline has been questioned. Public agencies have a critical role in the governance of many such areas, but there are tensions between the need for these agencies to be more “adaptive” and their current operating environment. Our aim is to analyze how institutions enable or constrain capacity to conserve biodiversity in a globally significant cross-border network of protected areas, the Australian Alps. Using a novel conceptual framework for diagnosing biodiversity institutions, our research examined institutional adaptive capacity and more general capacity for conserving biodiversity. Several intertwined issues limit public agencies’ capacity to fulfill their conservation responsibilities. Narrowly defined accountability measures constrain adaptive capacity and divert attention away from addressing key biodiversity outcomes. Implications for learning were also evident, with protected area agencies demonstrating successful learning for on-ground issues but less success in applying this learning to deeper policy change. Poor capacity to buffer political and community influences in managing significant cross-border drivers of biodiversity decline signals poor fit with the institutional context and has implications for functional fit. While cooperative federalism provides potential benefits for buffering through diversity, it also means protected area agencies have restricted authority to address cross-border threats. Restrictions on staff authority and discretion, as public servants, have further implications for deploying capacity. This analysis, particularly the possibility of fostering “ambidexterity”—creatively responding to political pressures in a way that also achieves a desirable outcome for biodiversity conservation—is one promising way of building capacity to buffer both political influences and ecological pressures. The findings and the supporting analysis provide insight into how institutional capacity to conserve biodiversity can be enhanced in protected areas in Australia and elsewhere, especially those governed by public agencies and/or multiple organizations and across jurisdictions.
Resumo:
Nitrogen fertilizer inputs dominate the fertilizer budget of grain sorghum growers in northern Australia, so optimizing use efficiency and minimizing losses are a primary agronomic objective. We report results from three experiments in southern Queensland sown on contrasting soil types and with contrasting rotation histories in the 2012-2013 summer season. Experiments were designed to quantify the response of grain sorghum to rates of N fertilizer applied as urea. Labelled 15N fertilizer was applied in microplots to determine the fate of applied N, while nitrous oxide (N2O) emissions were continuously monitored at Kingaroy (grass or legume ley histories) and Kingsthorpe (continuous grain cropping). Nitrous oxide is a useful indicator of gaseous N losses. Crops at all sites responded strongly to fertilizer N applications, with yields of unfertilized treatments ranging from 17% to 52% of N-unlimited potential. Maximum yields ranged from 4500 (Kupunn) to 5450 (Kingaroy) and 8010 (Kingsthorpe) kg/ha. Agronomic efficiency (kg additional grain produced/kg fertilizer N applied) at the optimum N rate on the Vertosol sites was 23 (80 N, Kupunn) to 25 (160N, Kingsthorpe), but 40-42 on the Ferrosols at Kingaroy (70-100N). Cumulative N2O emissions ranged from 0.44% (Kingaroy legume) to 0.93% (Kingsthorpe) and 1.15% (Kingaroy grass) of the optimum fertilizer N rate at each site, with greatest emissions from the Vertosol at Kingsthorpe. The similarity in N2O emissions factors between Kingaroy and Kingsthorpe contrasted markedly with the recovery of applied fertilizer N in plant and soil. Apparent losses of fertilizer N ranged from 0-5% (Ferrosols at Kingaroy) to 40-48% (Vertosols at Kupunn and Kingsthorpe). The greater losses on the Vertosols were attributed to denitrification losses and illustrate the greater risks of N losses in these soils in wet seasonal conditions.
Resumo:
Green bean production accounts for 2.4% of the total value of Australian vegetable production and was Australia's tenth largest vegetable crop in 2008-2009 by value. Australian green bean production is concentrated in Queensland (51%) and Tasmania (34%) where lost productivity as a direct result of insect damage is recognised as a key threat to the industry (AUSVEG, 2011). Green beans attract a wide range of insect pests, with thrips causing the most damage to the harvestable product, the pod. Thrips populations were monitored in green bean crops in the Gatton Research Facility, Lockyer Valley, South-east Queensland, Australia from 2002-2011. Field trials were conducted to identify the thrips species present, to record fluctuation in abundance during the season and assess pod damage as a direct result of thrips. Thirteen species of thrips were recorded during this time on bean plantings, with six dominant species being collected during most of the growing season: Frankliniella occidentalis, F. schultzei, Megalurothrips usitatus, Pseudanaphothrips achaetus, Thrips imaginis and T. tabaci. Thrips numbers ranged from less than one thrips per flower to as high as 5.39 thrips per flower. The highest incidence of thrips presence found in October/November 2008, resulted in 10.74% unmarketable pods due to thrips damage, while the lowest number of thrips recorded in April 2008 caused a productivity loss of 36.65% of pods as a result of thrips damage.
Resumo:
2016
Resumo:
Con el inicio del periodo Post-Guerra Fría el Sistema Internacional comienza a experimentar un incremento en el fortalecimiento de su componente social; la Sociedad de Estados alcanza un mayor nivel de homogenización, el estado, unidad predominante de esta, comienzan atravesar una serie de transformaciones que obedecerán a una serie de cambios y continuidades respecto al periodo anterior. Desde la perspectiva del Realismo Subalterno de las Relaciones Internacionales se destacan el proceso de construcción de estado e inserción al sistema como las variables que determinan el sentimiento de inseguridad experimentado por las elites estatales del Tercer Mundo; procesos que en el contexto de un nuevo y turbulento periodo en el sistema, tomara algunas características particulares que darán un sentido especifico al sentimiento de inseguridad y las acciones a través de las cuales las elites buscan disminuirlo. La dimensión externa del sentimiento de inseguridad, el nuevo papel que toma la resistencia popular como factor determinante del sentimiento de inseguridad y de la cooperación, así como del conflicto, entre los miembros de la Sociedad Internacional, la inserción como promotor de estrategias de construcción de Estado, son alguno de los temas puntuales, que desde la perspectiva subalterna, parecen salir a flote tras el análisis del sistema en lo que se ha considerado como el periodo Post-Guerra Fría. En este sentido Yemen, se muestra como un caso adecuado no solo para poner a prueba las postulados de la teoría subalterna, veinte años después de su obra más prominente (The third world security Predicament), escrita por M. Ayoob, sino como un caso pertinente que permite acercarse más a la comprensión del papel del Tercer Mundo al interior de la Sociedad Internacional de Estados.
Resumo:
En este número de reflexiones pedagógicas presentamos el modelo que se ha diseñado para implementar la evaluación por colegas pares en la Universidad del Rosario. Explicamos los principios que lo guían y las etapas y procedimientos para realizar esta evaluación; además, exponemos algunos aprendizajes que ha dejado su implementación en dos facultades en los últimos años, y presentamos algunos retos y desarrollos que enfrenta el modelo a futuro.
Resumo:
The seasonal climate drivers of the carbon cy- cle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combina- tion of seasonal pan-tropical data sets from 89 experimental sites (68 include aboveground wood productivity measure- ments and 35 litter productivity measurements), their asso- ciated canopy photosynthetic capacity (enhanced vegetation index, EVI) and climate, we ask how carbon assimilation and aboveground allocation are related to climate seasonal- ity in tropical forests and how they interact in the seasonal carbon cycle. We found that canopy photosynthetic capacity seasonality responds positively to precipitation when rain- fall is < 2000 mm yr-1 (water-limited forests) and to radia- tion otherwise (light-limited forests). On the other hand, in- dependent of climate limitations, wood productivity and lit- terfall are driven by seasonal variation in precipitation and evapotranspiration, respectively. Consequently, light-limited forests present an asynchronism between canopy photosyn- thetic capacity and wood productivity. First-order control by precipitation likely indicates a decrease in tropical forest pro- ductivity in a drier climate in water-limited forest, and in cur- rent light-limited forest with future rainfall < 2000 mm yr-1.