997 resultados para TV Marti (U.S.)
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): The U.S. Geological Survey is working to define a hydroclimatic data network. The Geological Survey collects stream discharge data at more than 7000 sites throughout the United States. Many of these stations are operated to supply information about specific activities such as flood control, irrigation projects, or hydropower generation. As a beginning, the Geological Survey will attempt to identify stations that represent natural streamflow. Several lists of stations representing "natural" streamflow have been complied in the past. While there is some overlap among these lists, a consistent compilation is preferred. The present effort is to produce one list identifying those stations having periods of record which would be suitable for mesoscale climatic analyses.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): An analysis of the principal components of surface temperature and precipitation in the western U.S. is presented. Data consist of monthly mean temperature and total precipitation for 66 climate divisions west of the Continental Divide, for the years 1931-1984. The analysis is repeated for three separate combinations of months - the water year (Oct - Sept), the cool season (Oct - Mar) and the warm season (Apr - Sept). Inspection of monthly precipitation climatology indicates that selection of these combinations of months results in very few awkward splittings of the natural precipitation seasons found in the West.
Resumo:
Bycatch and resultant discard mortality are issues of global concern. The groundfish demersal trawl fishery on the west coast of the United States is a multispecies fishery with significant catch of target and nontarget species. These catches are of particular concern in regard to species that have previously been declared overfished and are currently rebuilding biomass back to target levels. To understand these interactions better, we used data from the West Coast Groundfish Observer Program in a series of cluster analyses to evaluate 3 questions: 1) Are there identifiable associations between species caught in the bottom trawl fishery; 2) Do species that are undergoing population rebuilding toward target biomass levels (“rebuilding species”) cluster with targeted species in a consistent way; 3) Are the relationships between rebuilding bycatch species and target species more resolved at particular spatial scales or are relationships spatially consistent across the whole data set? Two strong species clusters emerged—a deepwater slope cluster and a shelf cluster—neither of which included rebuilding species. The likelihood of encountering rebuilding rockfish species is relatively low. To evaluate whether weak clustering of rebuilding rockfish was attributable to their low rate of occurrence, we specified null models of species occurrence. Results indicated that the ability to predict occurrence of rebuilding rockfish when target species were caught was low. Cluster analyses performed at a variety of spatial scales indicated that the most reliable clustering of rebuilding species was at the spatial scale of individual fishing ports. This finding underscores the value of spatially resolved data for fishery management.
Resumo:
Atlantic Croaker (Micropogonias undulatus) production dynamics along the U.S. Atlantic coast are regulated by fishing and winter water temperature. Stakeholders for this resource have recommended investigating the effects of climate covariates in assessment models. This study used state-space biomass dynamic models without (model 1) and with (model 2) the minimum winter estuarine temperature (MWET) to examine MWET effects on Atlantic Croaker population dynamics during 1972–2008. In model 2, MWET was introduced into the intrinsic rate of population increase (r). For both models, a prior probability distribution (prior) was constructed for r or a scaling parameter (r0); imputs were the fishery removals, and fall biomass indices developed by using data from the Multispecies Bottom Trawl Survey of the Northeast Fisheries Science Center, National Marine Fisheries Service, and the Coastal Trawl Survey of the Southeast Area Monitoring and Assessment Program. Model sensitivity runs incorporated a uniform (0.01,1.5) prior for r or r0 and bycatch data from the shrimp-trawl fishery. All model variants produced similar results and therefore supported the conclusion of low risk of overfishing for the Atlantic Croaker stock in the 2000s. However, the data statistically supported only model 1 and its configuration that included the shrimp-trawl fishery bycatch. The process errors of these models showed slightly positive and significant correlations with MWET, indicating that warmer winters would enhance Atlantic Croaker biomass production. Inconclusive, somewhat conflicting results indicate that biomass dynamic models should not integrate MWET, pending, perhaps, accumulation of longer time series of the variables controlling the production dynamics of Atlantic Croaker, preferably including winter-induced estimates of Atlantic Croaker kills.
Resumo:
Bycatch, or the unintended capture of fish, marine mammals, sea turtles, and seabirds by fishing gear, occurs to some degree in most fisheries. The recently released National Marine Fisheries Service’s (NMFS) U.S. National Bycatch Report provides information on bycatch in U.S. commercial fisheries by fishery and species. The report also provides national statistics in the form of national bycatch ratio and a national bycatch estimate. We describe the methods used to develop these statistics and compare them to similar studies. We conclude that the national bycatch ratio and national bycatch estimates developed by NMFS represent the best available information on bycatch in U.S. fisheries. However, given changes in bycatch management over time, as well as inter-annual variability in bycatch levels and a high percentage of fisheries for which data on bycatch are not currently available, we recommend that NMFS continue to support bycatch data collection and reporting efforts to improve the quality and quantity of bycatch data and estimates available to fisheries managers and scientists over time. This will enable NMFS to meet its requirements for bycatch reporting under the Magnuson-Stevens Act (MSA), as well as requirements for bycatch minimization under the MSA, Marine Mammal Protection Act, and Endangered Species Act.
Resumo:
In July 2007, a mandatory Federal observer program was implemented to characterize the U.S. Gulf of Mexico penaeid shrimp (Farfantepenaeus aztecus, F. duorarum, and Litopenaeus setiferus) fishery. In June 2008, the program expanded to include the South Atlantic penaeid and rock shrimp, Sicyonia spp., fisheries. Data collected from 10,206 tows during 5,197 sea days of observations were analyzed by geographical area and target species. The majority of tows (~70%) sampled were off the coasts of Texas and Louisiana. Based on total hours towed, the highest concentrated effort occurred off South Texas and southwestern Florida. Gear information, such as net characteristics, bycatch reduction devices, and turtle excluder devices were fairly consistent among areas and target species. By species categories, finfish comprised the majority (≥57%) of the catch composition in the Gulf of Mexico and South Atlantic penaeid shrimp fisheries, while in the South Atlantic rock shrimp fishery the largest component (41%) was rock shrimp. Bycatch to shrimp ratios were lower than reported in previous studies for the Gulf of Mexico penaeid shrimp fishery. These decreased ratios may be attributed to several factors, notably decreased shrimp effort and higher shrimp catch per unit of effort (CPUE) in recent years. CPUE density surface plots for several species of interest illustrated spatial differences in distribution. Hot Spot Analyses for shrimp (penaeid and rock) and bycatch species identified areas with significant clustering of high or low CPUE values. Spatial and temporal distribution of protected species interactions were documented.
Resumo:
In this paper, we present the analysis of electroosmotic flow in a branched -turn nanofluidic device, which we developed for detection and sorting of single molecules. The device, where the channel depth is only 150 nm, is designed to optically detect fluorescence from a volume as small as 270 attolitres (al) with a common wide-field fluorescent setup. We use distilled water as the liquid, in which we dilute 110 nm fluorescent beads employed as tracer-particles. Quantitative imaging is used to characterize the pathlines and velocity distribution of the electroosmotic flow in the device. Due to the device's complex geometry, the electroosmotic flow cannot be solved analytically. Therefore we use numerical flow simulation to model our device. Our results show that the deviation between measured and simulated data can be explained by the measured Brownian motion of the tracer-particles, which was not incorporated in the simulation.
Resumo:
Gulf of Mexico, white shrimp, Litopenaeus setiferus, catch statistics have been collected by NOAA’s National Marine Fisheries Service for over 50 years. Recent occurrences such as natural and manmade disasters have raised awareness for the need to publish these types of data. Here we report shrimp data collected from 1984 to 2011. These 28 years of catch history are the time series used in the most recent Gulf of Mexico white shrimp stock assessment. Fishing effort for this stock has fluctuated over the period reported, ranging from 54,675 to 162,952 days fished. Catch averaged 55.7 million pounds per year, increasing significantly over the times series. In addition, catch rates have been increasing in recent years, with CPUE levels ranging from 315 lb/day fished in 2002, to 1,175 lb/ day fished in 2008. The high CPUE’s we have measured is one indication that the stock was not in decline during this time period. Consequently, we believe the decline in effort levels is due purely to economic factors. Current stock assessments are now using these baseline data to provide managers with further insights into the Gulf L. setiferus stocks.
Resumo:
The National Marine Fisheries Service (NMFS) is dedicated to the stewardship of living marine resources (LMR’s). This is accomplished through science-based conservation and management, and the promotion of healthy ecosystems. As a steward, NMFS has an obligation to conserve, protect, and manage these resources in a way that ensures their continuation as functioning components of healthy marine ecosystems, affords economic opportunities, and enhances the quality of life for the American public. In addition to its responsibilities within the U.S. Exclusive Economic Zone (EEZ), NMFS plays a supportive and advisory role in the management of LMR’s in the coastal areas under state jurisdiction and provides scientific and policy leadership in the international arena. NMFS also implements international measures for the conservation and management of LMR’s, as appropriate.NMFS receives its stewardship responsibilities under a number of Federal laws. These include the Nation’s primary fisheries law, the Magnuson Fishery Conservation and Management Act. This law was first passed in 1976, later reauthorized as the Magnuson-Stevens Fishery Conservation and Management Act in 1996, and reauthorized again on 12 January 2007 as the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act (MSRA). The MSRA mandates strong action to conserve and manage fishery resources and requires NMFS to end overfishing by 2010 in all U.S. commercial and recreational fisheries, rebuild all overfished stocks, and conserve essential fish habitat.
Resumo:
Salt River Bay National Historical Park and Ecological Preserve (hereafter, SARI or the park) was created in 1992 to preserve, protect, and interpret nationally significant natural, historical, and cultural resources (United States Congress 1992). The diverse ecosystem within it includes a large mangrove forest, a submarine canyon, coral reefs, seagrass beds, coastal forests, and many other natural and developed landscape elements. These ecosystem components are, in turn, utilized by a great diversity of flora and fauna. A comprehensive spatial inventory of these ecosystems is required for successful management. To meet this need, the National Oceanic and Atmospheric Administration (NOAA) Biogeography Program, in consultation with the National Park Service (NPS) and the Government of the Virgin Islands Department of Planning and Natural Resources (VIDPNR), conducted an ecological characterization. The characterization consists of three complementary components: a text report, digital habitat maps, and a collection of historical aerial photographs. This ecological characterization provides managers with a suite of tools that, when coupled with the excellent pre-existing body of work on SARI resources, enables improved research and monitoring activities within the park (see Appendix F for a list of data products).
Resumo:
In March-April 2004, the National Oceanic and Atmospheric Administration (NOAA), U.S. Environmental Protection Agency (EPA), and State of Florida (FL) conducted a study to assess the status of ecological condition and stressor impacts throughout the South Atlantic Bight (SAB) portion of the U.S. continental shelf and to provide this information as a baseline for evaluating future changes due to natural or human-induced disturbances. The boundaries of the study region extended from Cape Hatteras, North Carolina to West Palm Beach, Florida and from navigable depths along the shoreline seaward to the shelf break (~100m). The study incorporated standard methods and indicators applied in previous national coastal monitoring programs — Environmental Monitoring and Assessment Program (EMAP) and National Coastal Assessment (NCA) — including multiple measures of water quality, sediment quality, and biological condition. Synoptic sampling of the various indicators provided an integrative weight-of-evidence approach to assessing condition at each station and a basis for examining potential associations between presence of stressors and biological responses. A probabilistic sampling design, which included 50 stations distributed randomly throughout the region, was used to provide a basis for estimating the spatial extent of condition relative to the various measured indicators and corresponding assessment endpoints (where available). Conditions of these offshore waters are compared to those of southeastern estuaries, based on data from similar EMAP/NCA surveys conducted in 2000-2004 by EPA, NOAA, and partnering southeastern states (Florida, Georgia, South Carolina, North Carolina, Virginia) (NCA database for estuaries, EPA Gulf Ecology Division, Gulf Breeze FL). Data from a total of 747 estuarine stations are included in this database. As for the offshore sites, the estuarine samples were collected using standard methods and indicators applied in previous coastal EMAP/NCA surveys including the probabilistic sampling design and multiple indicators of water quality, sediment quality, and biological condition (benthos and fish). The majority of the SAB had high levels of DO in near-bottom water (> 5 mg L-1) indicative of "good" water quality. DO levels in bottom waters exceeded this upper threshold at all sites throughout the coastal-ocean survey area and in 76% of estuarine waters. Twenty-one percent of estuarine bottom waters had moderate levels of DO between 2 and 5 mg L-1 and 3% had DO levels below 2 mg L-1. The majority of sites with DO in the low range considered to be hypoxic (< 2 mg L-1) occurred in North Carolina estuaries. There also was a notable concentration of stations with moderate DO levels (2 – 5 mg L-1) in Georgia and South Carolina estuaries. Approximately 58% of the estuarine area had moderate levels of chlorophyll a (5-10 μg L-1) and about 8% of the area had higher levels, in excess of 10 μg L-1, indicative of eutrophication. The elevated chlorophyll a levels appeared to be widespread throughout the estuaries of the region. In contrast, offshore waters throughout the region had relatively low levels of chlorophyll a with 100% of the offshore survey area having values < 5 μg L-1.
Resumo:
Since 2001, NOAA National Centers for Coastal Ocean Science (NCCOS), Center for Coastal Monitoring and Assessment’s (CCMA) Biogeography Branch (BB) has been working with federal and territorial partners to characterize, monitor, and assess the status of the marine environment across the U.S. Virgin Islands (USVI). At the request of the St. Thomas Fisherman’s Association (STFA) and NOAA Marine Debris Program, CCMA BB developed new partnerships and novel technologies to scientifically assess the threat from derelict fish traps (DFTs). Traps are the predominant gear used for finfish and lobster harvesting in St. Thomas and St. John. Natural phenomena (ground swells, hurricanes) and increasing competition for space by numerous user groups have generated concern about increasing trap loss and the possible ecological, as well as economic, ramifications. Prior to this study, there was a general lack of knowledge regarding derelict fish traps in the Caribbean. No spatially explicit information existed regarding fishing effort, abundance and distribution of derelict traps, the rate at which active traps become derelict, or areas that are prone to dereliction. Furthermore, there was only limited information regarding the impacts of derelict traps on natural resources including ghost fishing. This research identified two groups of fishing communities in the region: commercial fishing that is most active in deeper waters (30 m and greater) and an unknown number of unlicensed subsistence and or commercial fishers that fish closer to shore in shallower waters (30 m and less). In the commercial fishery there are an estimated 6,500 active traps (fish and lobster combined). Of those traps, nearly 8% (514) were reported lost during the 2008-2010 period. Causes of loss/dereliction include: movement of the traps or loss of trap markers due to entanglement of lines by passing vessels; theft; severe weather events (storms, large ground swells); intentional disposal by fishermen; traps becoming caught on various bottom structures (natural substrates, wrecks, etc.); and human error.