918 resultados para Surface electron properties
Resumo:
Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (<100 μm) from different volcanoes were measured for their specific surface area, as, porosity and water adsorption properties with the aim to provide insights into the capacity of silicate ash particles to react with gases, including water vapour. To do so, we performed high-resolution nitrogen and water vapour adsorption/desorption experiments at 77 K and 303 K, respectively. The nitrogen data indicated as values in the range 1.1-2.1 m2/g, except in one case where as of 10 m2/g was measured. This high value is attributed to incorporation of hydrothermal phases, such as clay minerals, in the ash surface composition. The data also revealed that the ash samples are essentially non-porous, or have a porosity dominated by macropores with widths >500 Å All the specimens had similar pore size distributions, with a small peak centered around 50 Å These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ∼10-2 g. Some volcanic implications of this study are discussed. © Springer-Verlag 2004.
Resumo:
Purpose – The purpose of this paper is to investigate the rheological behaviour of three different lead-free solder pastes used for surface mount applications in the electronic industry.Design/methodology/approach – This study concerns the rheological measurements of solder paste samples and is made up of three parts. The first part deals with the measurement of rhelogical properties with three different measuring geometries, the second part looks into the effect of frequencies on oscillatory stress sweep measurements and the final part reports on the characterisation and comparison of three different types of Pb-free solder pastes. Findings – Among the three geometries, the serrated parallel plate was found effective in minimising the wall-slip effect. From the oscillatory stresssweep data with different frequencies; it was observed that the linear visco-elastic region is independent of frequency for all the solder paste samples. To understand the shear thinning behaviour of solder paste, the well known Cross and Carreau models were fitted to the viscosity data. Moreover,creep-recovery and dynamic frequency-sweep tests were also carried out without destroying the sample’s structure and have yielded useful information on the pastes behaviour.Research limitations/implications – More extensive research is needed to fully characterise the wall-slip behaviour during the rheological measurements of solder pastes. Practical implications – The rheological test results presented in this paper will be of important value for research and development, quality control and facilitation of the manufacturing of solder pastes and flux mediums. Originality/value – This paper shows how wall-slip effects can be effectively avoided during rheological measurements of solder pastes. The paper also outlines how different rheological test methods can be used to characterise solder paste behaviours
Resumo:
Despite the emerging use of diamond-like carbon (DLC) as a coating for medical devices, few studies have examined the resistance of DLC coatings onto medical polymers to both microbial adherence and encrustation. In this study, amorphous DLC of a range of refractive indexes (1.7-1.9) and thicknesses (100-600 nm) was deposited onto polyurethane, a model polymer, and the resistance to microbial adherence (Escherichia coli; clinical isolate) and encrustation examined using in vitro models. In comparison to the native polymer, the advancing and receding contact angles of DLC-coated polyurethane were lower, indicating greater hydrophilic properties. No relationship was observed between refractive index, thickness, and advancing contact angle, as determined using multiple correlation analysis. The resistances of the various DLC-coated polyurethane films to encrustation and microbial adherence were significantly greater than that to polyurethane; however, there were individual differences between the resistances of the various DLC coatings. In general, increasing the refractive index of the coatings (100 nm thickness) decreased the resistance of the films to both hydroxyapatite and struvite encrustation and to microbial adherence. Films of lower thicknesses (100 and 200 nm; of defined refractive index, 1.8), exhibited the greatest resistance to encrustation and to microbial adherence. In conclusion, this study has uniquely illustrated both the microbial antiadherence properties and resistance to urinary encrustation of DLC-coated polyurethane. The resistances to encrustation and microbial adherence were substantial, and in light of this, it is suggested that DLC coatings of low thickness and refractive index show particular promise as coatings of polymeric medical devices. (c) 2006 Wiley Periodicals, Inc.
Resumo:
In this study, the surface properties of and work required to remove 12 commercially available and developmental catheters from a model biological medium (agar), a measure of catheter lubricity, were characterised and the relationships between these properties were examined using multiple regression and correlation analysis. The work required for removal of catheter sections (7 cm) from a model biological medium (1% w/w agar) were examined using tensile analysis. The water wettability of the catheters were characterised using dynamic contact angle analysis, whereas surface roughness was determined using atomic force microscopy. Significant differences in the ease of removal were observed between the various catheters, with the silicone-based materials generally exhibiting the greatest ease of removal. Similarly, the catheters exhibited a range of advancing and receding contact angles that were dependent on the chemical nature of each catheter. Finally, whilst the microrugosities of the various catheters differed, no specific relationship to the chemical nature of the biomaterial was apparent. Using multiple regression analysis, the relationship between ease of removal, receding contact angle and surface roughness was defined as: Work done (N mm) 17.18 + 0.055 Rugosity (nm)-0.52 Receding contact angle (degrees) (r = 0.49). Interestingly, whilst the relationship between ease of removal and surface roughness was significant (r = 0.48, p = 0.0005), in which catheter lubricity increased as the surface roughness decreased, this was not the case with the relationship between ease of removal and receding contact angle (r = -0.18, p > 0.05). This study has therefore uniquely defined the contributions of each of these surface properties to catheter lubricity. Accordingly, in the design of urethral catheters. it is recommended that due consideration should be directed towards biomaterial surface roughness to ensure maximal ease of catheter removal. Furthermore, using the method described in this study, differences in the lubricity of the various catheters were observed that may be apparent in their clinical use. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The contribution of electron-phonon scattering and grain boundary scattering to the mid-IR (lambda = 3.392 mum) properties of An has been assessed by examining both bulk, single crystal samples-Au(1 1 1) and Au(1 1 0)-and thin film, polycrystalline An samples at 300 K and 100 K by means of surface plasmon polariton excitation. The investigation constitutes a stringent test for the in-vacuo Otto-configuration prism coupler used to perform the measurements, illustrating its strengths and limitations. Analysis of the optical response is guided by a physically based interpretation of the Drude model. Relative to the reference case of single crystal Au at 100 K (epsilon = - 568 + i17.5), raising the temperature to 300 K causes increased electron-phonon scattering that accounts for a reduction of similar to40 nm in the electron mean free path. Comparison of a polycrystalline sample to the reference case determines a mean free path due to grain boundary scattering of similar to 17 nm, corresponding to about half the mean grain size as determined from atomic force microscopy and indicating a high reflectance coefficient for the An grain boundaries. An analysis combining consideration of grain boundary scattering and the inclusion of a small percentage of voids in the polycrystalline film by means of an effective medium model indicates a value for the grain boundary reflection coefficient in the range 0.55-0.71. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
This work investigates the polyanion initiated gelation process in fabricating chitosan-TPP (tripolyphosphate) nanoparticles in the size range of 100-250 nm intended to be used as carriers for the delivery of gene or protein macromolecules. It demonstrates that ionic gelation of cationic chitosan molecules offers a flexible and easily controllable process for systematically and predictably manipulating particle size and surface charge which are important properties in determining gene transfection efficacy if the nanoparticles are used as non-viral vectors for gene delivery, or as delivery carriers for protein molecules. Variations in chitosan molecular weight, chitosan concentration, chitosan to TPP weight ratio and solution pH value were examined systematically for their effects on nanoparticle size, intensity of surface charge, and tendency of particle aggregation so as to enable speedy fabrication of chitosan nanoparticles with predetermined properties. The chitosan-TPP nanoparticles exhibited a high positive surface charge across a wide pH range, and the isoelectric point (IEP) of the nanoparticles was found to be at pH 9.0. Detailed imaging analysis of the particle morphology revealed that the nanoparticles possess typical shapes of polyhedrons (e.g., pentagon and hexagon), indicating a similar crystallisation mechanism during the particle formation and growth process. This study demonstrates that systematic design and modulation of the surface charge and particle size of chitosan-TPP nanoparticles can be readily achieved with the right control of critical processing parameters, especially the chitosan to TPP weight ratio. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Aims. The aim of this work is to constrain the size, composition and surface properties of asteroids (2867) Steins and (21) Lutetia, targets of the Rosetta mission. Rosetta is en route to rendezvous with comet 67P/Churyumov-Gerasimenko.
Methods. Thermal-Infrared N-band observations for Lutetia and Steins were obtained using, respectively, TIMMI2 on the ESO 3.6-m telescope at La Silla and VISIR at the UT3 VLT telescope on Cerro Paranal; visible light curves for Steins were obtained using NTT+SUSI2, while R-band photometry for Lutetia was obtained with the 2.0-m Faulkes Telescope North on Haleakala. For Steins, the NEATM model was used to constrain its visible geometric albedo and beaming parameter. A detailed thermophysical model was implemented and used to analyze our set of observations of Lutetia as well as previous reported measurements.
Results. The visible photometry of Steins was used along with data from the literature to yield a slope parameter of G=0.32(-0.11)(+0.14). Problems during the observations led to the loss of measurements on two of the three N-band filters requested for Steins. Using the remaining data and the polarimetric albedo recently published, we were able to constrain the thermal beaming parameter as eta > 1.2, which is more similar to near-Earth asteroids and suggests either high thermal inertia or a very rough surface. For Lutetia, the best fit visible geometric albedo obtained with our model and the reported observation is p(nu)=0.129, significantly lower than that obtained if one applies the same model to previously reported measurements. The discrepancy cannot be explained solely by assuming inhomogeneities in the surface properties and we suggest that the most plausible explanation is the presence of one or more large craters on the northern hemisphere. For both sets of measurements, the implied single scattering albedo of Lutetia is compatible with laboratory measurements of carbonaceous chondrite meteorites.
Resumo:
Ruthenium is one of the poorest catalysts for CO oxidation under normal conditions (low or medium O coverage and normal temperature). However, a recent study [Science 285, 1042 (1999)] reveals that, under femtosecond laser irradiation, CO2 can be formed on the Ru surface, and the reaction follows an electron-mediated mechanism. We carried out density functional theory calculations to investigate CO oxidation via an electron-mediated mechanism on Ru(0001). By comparison to the reaction under normal conditions, following features emerge in the electron-mediated mechanism: (i) more reaction channels are open; (ii) the reaction barrier is significantly lowered. The physical origins for these novel features have been analyzed. (C) 2001 American Institute of Physics.
Resumo:
Chitins produced via a conventional chemical route as well as from a new biological process were modified to increase the efficiency of enzymatic deacetylation reactions for the production of novel biological chitosan. These modified chitins were reacted for 24h with extracellular fungal enzymes from Colletotrichum lindemuthianum. The chemical and physical properties of the various substrates were analysed and their properties related to the effectiveness in the deacetylation reaction. Modifications of the chitins affected the degree of deacetylation with varied effects. Without further modification to reduce crystallinity and to open up the solid substrate structure, the chitins were found to be poor substrates for the heterogeneous solid-liquid enzymatic catalysis. It was found that the solvent and drying method used in modifying the chitins had significant impact on the final efficiency of the enzymatic deacetylation reaction. The most successful modifications through freeze drying of a colloidal chitin suspension increased the degree of enzymatic deacetylation by 20 fold. These processes reduce the crystallinity of the chitin making it easier for the enzymes to access their internal structure. X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and BET isotherm analysis are employed to characterise the modified chitins to ascertain the degree of crystallinity, porous structure, surface area, and morphology.
Resumo:
Predicable and controlled degradation is not only central to the accurate delivery of bioactive agents and drugs, it also plays a vital role in key aspects of bone tissue engineering. The work addressed in this paper investigates the utilisation of e-beam irradiation in order to achieve a controlled (surface) degradation profile. This study focuses on the modification of commercially and clinically relevant materials, namely poly(L-lactic acid) (PLLA), poly(L-lactide-hydroxyapatite) (PLLA-HA), poly(L-lactide-glycolide) co-polymer (PLG) and poly(L-lactide-DL-lactide) co-polymer (PLDL). Samples were subjected to irradiation treatments using a 0.5 MeV electron beam with delivered surface doses of 150 and 500 kGy. In addition, an acrylic attenuation shield was used for selected samples to control the penetration of the e-beam. E-beam irradiation induced chain scission in all polymers, as characterized by reduced molecular weights and glass transition temperatures (T-g). Irradiation not only produced changes in the physical properties of the polymers but also had associated effects on surface erosion of the materials during hydrolytic degradation. Moreover, the extent to which both mechanical and hydrolytic degradation was observed is synonymous with the estimated penetration of the beam (as controlled by the employment of an attenuation shield). (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Durability of concrete can be improved by applying surface treatments. Pore-lining treatments prevent or delay the ingress of water-borne salts while allowing vapour transfer across the concrete surface. The most common pore-liners are silanes and siloxanes; both reported to give good results. One area of concern, however, is variability in effectiveness of the treatment. This variability may be due to inconsistent coverage or extreme drying conditions. With care these can be controlled but another source of variability which is difficult to control is the moisture profile within the concrete at the time of application of the treatment. This paper describes a test programme to assess the sensitivity of three different surface treatments to moisture gradient in the concrete at the time of application of treatment. The test programme included durability parameters such as chloride ingress, corrosion due to chloride ingress, freeze-thaw salt scaling resistance. Water absorption (sorptivity) of treated and untreated concretes was also measured with a non-distructive test technique called Autoclam with the aim of determining if the Autoclam sorptivity test can be used to assess the effectiveness of surface treatments. Using these results it is possible to avoid, or allow for, moisture conditions which would adversely affect the success of a pore-liner. However there are advantages in specifying an expected performance of the surface treatment rather than specifying the conditions in which it must be placed. By this method a treatment would have to achieve a specified value of sorptivity or a specified reduction in sorptivity. Failure to do so would be an objective basis on which to make a decision of whether or not to reject the treatment. The Autoclam is a device capable of measuring sorptivity values down to the range typical of surface treated concrete. The paper assesses if the device can be used to discriminate between acceptable treatment and unsatisfactory treatments.
Resumo:
The objective of this work was to study the textural properties of edible films made from sour (acid) whey for food wrapping application. Acid whey is often regarded as a waste product, obtained as a watery effluent in the manufacturing of cottage cheese. In general, owing to its high nutritional value, whey has gained importance as an additive in food manufacturing processes and in health drink formulations. In this work, fresh sour whey was used to make edible films. The proteins in the whey were concentrated by ultrafiltration to reduce the water content. Only natural ingredients such as acid whey and agar were used to form the film under controlled heating (650 W) in a microwave oven. The structural and surface characteristics of the films were tested by a texture analyser and scanning electron micrographs.