958 resultados para Sugar and ethanol milling plants
Resumo:
Interrill erosion occurs by the particle breakdown caused by raindrop impact, by particle transport in surface runoff, by dragging and suspension of particles disaggregated from the soil surface, thus removing organic matter and nutrients that are essential for agricultural production. Crop residues on the soil surface modify the characteristics of the runoff generated by rainfall and the consequent particle breakdown and sediment transport resulting from erosion. The objective of this study was to determine the minimum amount of mulch that must be maintained on the soil surface of a sugarcane plantation to reduce the soil, water and nutrient losses by decreasing interrill erosion. The study was conducted in Pradópolis, São Paulo State, in 0.5 x 1.0 m plots of an Oxisol, testing five treatments in four replications. The application rates were based on the crop residue production of the area of 1.4 kg m-2 (T1- no cane trash; T2-25 % of the cane trash; T3- 50 % trash; T4-75 % trash; T5-100 % sugarcane residues on the surface), and simulated rainfall was applied at an intensity of 65 mm h-1 for 60 min. Runoff samples were collected in plastic containers and soon after taken to the laboratory to quantify the losses of soil, water and nutrients. To minimize soil loss by interrill erosion, 75 % of the cane mulch must be maintained on the soil, to control water loss 50 % must be maintained and 25 % trash controls organic matter and nutrient losses. This information can contribute to optimize the use of this resource for soil conservation on the one hand and the production of clean energy in sugar and alcohol industries on the other.
Resumo:
Synthesis of polyhydroxyalkanoates (PHAs) in crop is viewed as an attractive approach for the production of this family of biodegradable plastics in large quantities and at low costs. Synthesisof PHAs containing various monomers has so far been demonstrated in the cytosol, plastids, and peroxisomes of plants. Several biochemical pathways have been modifies to achieve this, including the isoprenois pathway, the fatty acid biosynthetic pathway, and the fatty acid
Resumo:
Phytotoxicity and transfer of potentially toxic elements, such as cadmium (Cd) or barium (Ba), depend on the availability of these elements in soils and on the plant species exposed to them. With this study, we aimed to evaluate the effect of Cd and Ba application rates on yields of pea (Pisum sativum L.), sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and maize (Zea mays L.) grown under greenhouse conditions in an Oxisol and an Entisol with contrasting physical and chemical properties, and to correlate the amount taken up by plants with extractants commonly used in routine soil analysis, along with transfer coefficients (Bioconcentration Factor and Transfer Factor) in different parts of the plants. Plants were harvested at flowering stage and measured for yield and Cd or Ba concentrations in leaves, stems, and roots. The amount of Cd accumulated in the plants was satisfactorily evaluated by both DTPA and Mehlich-3 (M-3). Mehlich-3 did not relate to Ba accumulated in plants, suggesting it should not be used to predict Ba availability. The transfer coefficients were specific to soils and plants and are therefore not recommended for direct use in risk assessment models without taking soil properties and group of plants into account.
Resumo:
• Grasses rank among the world's most ecologically and economically important plants. Repeated evolution of the C(4) syndrome has made photosynthesis highly efficient in many grasses, inspiring intensive efforts to engineer the pathway into C(3) crops. However, comparative biology has been of limited use to this endeavor because of uncertainty in the number and phylogenetic placement of C(4) origins. • We built the most comprehensive and robust molecular phylogeny for grasses to date, expanding sampling efforts of a previous working group from 62 to 531 taxa, emphasizing the C(4)-rich PACMAD (Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae and Danthonioideae) clade. Our final matrix comprises c. 5700 bp and is > 93% complete. • For the first time, we present strong support for relationships among all the major grass lineages. Several new C(4) lineages are identified, and previously inferred origins confirmed. C(3)/C(4) evolutionary transitions have been highly asymmetrical, with 22-24 inferred origins of the C(4) pathway and only one potential reversal. • Our backbone tree clarifies major outstanding systematic questions and highlights C(3) and C(4) sister taxa for comparative studies. Two lineages have emerged as hotbeds of C(4) evolution. Future work in these lineages will be instrumental in understanding the evolution of this complex trait.
Resumo:
Transcript patterns elicited in response to attack reveal, at the molecular level, how plants respond to aggressors. These patterns are fashioned both by inflicted physical damage as well as by biological components displayed or released by the attacker. Different types of attacking organisms might therefore be expected to elicit different transcription programs in the host. Using a large-scale DNA microarray, we characterized gene expression in damaged as well as in distal Arabidopsis thaliana leaves in response to the specialist insect, Pieris rapae. More than 100 insect-responsive genes potentially involved in defense were identified, including genes involved in pathogenesis, indole glucosinolate metabolism, detoxification and cell survival, and signal transduction. Of these 114 genes, 111 were induced in Pieris feeding, and only three were repressed. Expression patterns in distal leaves were markedly similar to those of local leaves. Analysis of wild-type and jasmonate mutant plants, coupled with jasmonate treatment, showed that between 67 and 84% of Pieris-regulated gene expression was controlled, totally or in part, by the jasmonate pathway. This was correlated with increased larval performance on the coronatine insensitive1 glabrous1 (coi1-1 gl1) mutant. Independent mutations in COI1 and GL1 led to a faster larval weight gain, but the gl1 mutation had relatively little effect on the expression of the insect-responsive genes examined. Finally, we compared transcript patterns in Arabidopis in response to larvae of the specialist P. rapae and to a generalist insect, Spodoptera littoralis. Surprisingly, given the complex nature of insect salivary components and reported differences between species, almost identical transcript profiles were observed. This study also provides a robustly characterized gene set for the further investigation of plant-insect interaction.
Resumo:
The aim of this work was to investigate the effect of water stress on N2 fixation and nodule structure of two common bean (Phaseolus vulgaris L.) cultivars Carioca and EMGOPA-201. Plants were harvested after five and eight days of water stress. Carioca had lower nodule dry weight on both water stress periods; shoot dry weight was lower at five days water stress and did not differ from control after eight days stress. Both cultivars had lower nitrogenase activity than control after five and eight days water stress. For both cultivars, after eight days stress bacteroid membranes were damaged. Carioca presented more pronounced damage to infected tissue, with host cell vacuolation and loss of the peribacteroid membrane at five days after stress; at eight days after stress, there was degradation of cytoplasm host cells and senescence of bacteroids, with their release into intercellular spaces. Intensity of immunogold-labeling of intercellular cortical glycoprotein with the monoclonal antibodies MAC 236/265 was different for both cultivars.
Resumo:
Biosolids have been considered satisfactory to supply crops and plant nutrients. The ideal biosolids application rate should result in high crop yields and nutrient uptake, and leave low concentrations of nutrients in soils to avoid environmental problems. The objective of this study was to estimate the capacity of five biosolids to supply N and P to ryegrass (Lolium perenne) after a single application of either fertilizers or biosolids to a Spodosol and an Oxisol. Results showed that 6% - 36% of N and 3% - 7% of P applied as biosolids were recovered in plants grown on the Spodosol, while the range on the Oxisol was 26%-75% for N and 1.2%-3.7% for phosphorus. Biosolids' efficiency on supplying N and P to plants was similar to fertilizer on the Spodosol, but on the Oxisol it refrained to 65%-67% fertilizer's efficiency. After a single application of biosolids followed by six consecutive harvests, 25%-94% of the N and 93%-99% of the P were not used by plants and remain in the soils.
Resumo:
The aim of this work was to evaluate a protocol for plant regeneration by means of somatic embryos obtained from isolated adult pejibaye leaf primordia, and to describe histological origin of embryos and morphogenetic response. Explants were cultivated in modified MS medium. Mesophyll parenchymatous cells originated meristemoids (preembryonic complex formation) induced with 7.1 µM BAP in the first two subculture periods. After polarized structures with 12.9 µM NAA and 3.55 µM BAP were formed in the third subculture, somatic embryos developed and regenerated normal plants. The mesophyll parenchymatous cells display high capacity of direct response to the auxin and cytokinin.
Resumo:
Arabidopsis thaliana PHO1 is primarily expressed in the root vascular cylinder and is involved in the transfer of inorganic phosphate (Pi) from roots to shoots. To analyze the role of PHO1 in transport of Pi, we have generated transgenic plants expressing PHO1 in ectopic A. thaliana tissues using an estradiol-inducible promoter. Leaves treated with estradiol showed strong PHO1 expression, leading to detectable accumulation of PHO1 protein. Estradiol-mediated induction of PHO1 in leaves from soil-grown plants, in leaves and roots of plants grown in liquid culture, or in leaf mesophyll protoplasts, was all accompanied by the specific release of Pi to the extracellular medium as early as 2-3 h after addition of estradiol. Net Pi export triggered by PHO1 induction was enhanced by high extracellular Pi and weakly inhibited by the proton-ionophore carbonyl cyanide m-chlorophenylhydrazone. Expression of a PHO1-GFP construct complementing the pho1 mutant revealed GFP expression in punctate structures in the pericycle cells but no fluorescence at the plasma membrane. When expressed in onion epidermal cells or in tobacco mesophyll cells, PHO1-GFP was associated with similar punctate structures that co-localized with the Golgi/trans-Golgi network and uncharacterized vesicles. However, PHO1-GFP could be partially relocated to the plasma membrane in leaves infiltrated with a high-phosphate solution. Together, these results show that PHO1 can trigger Pi export in ectopic plant cells, strongly indicating that PHO1 is itself a Pi exporter. Interestingly, PHO1-mediated Pi export was associated with its localization to the Golgi and trans-Golgi networks, revealing a role for these organelles in Pi transport.
Resumo:
The objective of this work was to screen plants with insecticide activity, in order to isolate, identify and assess the bioactivity of insecticide compounds present in these plants, against Coleoptera pests of stored products: Oryzaephilus surinamensis L. (Silvanidae), Rhyzopertha dominica F. (Bostrichidae) and Sitophilus zeamais Mots. (Curculionidae). The plant species used were: basil (Ocimum selloi Benth.), rue (Ruta graveolens L.), lion's ear (Leonotis nepetifolia (L.) R.Br.), jimson weed (Datura stramonium L.), baleeira herb (Cordia verbenacea L.), mint (Mentha piperita L.), wild balsam apple (Mormodica charantia L.), and billy goat weed or mentrasto (Ageratum conyzoides L.). The insecticide activity of hexane and ethanol extracts from those plants on R. dominica was evaluated. Among them, only hexane extract of A. conyzoides showed insecticide activity; the hexane extract of this species was successively fractionated by silica gel column chromatography, for isolation and purification of the active compounds. Compounds 5,6,7,8,3',4',5'-heptamethoxyflavone; 5,6,7,8,3'-pentamethoxy-4',5'-methilenedioxyflavone and coumarin were identified. However, only coumarin showed insecticide activity against three insect pests (LD50 from 2.72 to 39.71 mg g-1 a.i.). The increasing order of insects susceptibility to coumarin was R. dominica, S. zeamais and O. surinamensis.
Resumo:
The objective of this work was to identify new sources of simple and multiple resistances to Cowpea severe mosaic virus (CPSMV), Cowpea aphid-borne mosaic virus (CABMV) and Cucumber mosaic virus (CMV) isolates in cowpea (Vigna unguiculata). Thirty-three genotypes from the germplasm bank of Universidade Federal do Ceará were tested as to their resistance to four CPSMV isolates, two CABMV isolates and one CMV isolate. Twenty-five days after the first virus inoculations, all inoculated plants, including the asymptomatic ones, were tested by serology. Genotypes were classified as: immune, plants without symptoms and negative serology; resistant, plants with mild mosaic and positive serology; susceptible, plants with mosaic and positive serology; and highly susceptible, plants with severe mosaic, other systemic symptoms, including systemic necrosis, and positive serology. Simple and multiple resistances to viruses were identified among the evaluated genotypes, but none of them showed multiple immunities to all isolates. Four genotypes showed immunity to all CPSMV isolates, two were immune to CABMV and two showed immunity to CMV. Eleven genotypes showed multiple resistances to two viruses, allowing for the development of new cultivars with more stable and broader resistance. Genotypes Purple Knuckle Hull-55, MNC-03-731C-21 and CNCx284-66E show resistance to CABMV, even when inoculated with CMV.
Resumo:
The aim was to explore whether the origin of carbohydrate oxidation (exogenous compared with endogenous carbohydrate) after consumption of a mixed meal was influenced by obesity in children. Ten obese prepubertal children 8 y of age (44.2 +/- 3.6 kg) were studied over 9.5 h and compared with eight normal-weight, matched control children (28.5 +/- 1.6 kg). They were fed a mixed meal containing naturally enriched [13C]carbohydrate (cane sugar and popcorn) providing 55% of the daily energy requirement as measured by 24-h resting metabolic rate. Total carbohydrate oxidation was calculated by indirect calorimetry (hood system) whereas exogenous carbohydrate oxidation was estimated from carbon dioxide production (VCO2), the isotopic enrichment of breath 13CO2, and the abundance of [13C]carbohydrate in the meal ingested. The time course of 13CO2 in breath-measured over 570 min-followed a similar pattern in both groups. Although total carbohydrate oxidation was not significantly different among the two groups, exogenous carbohydrate utilization was significantly greater (P < 0.03) and endogenous carbohydrate oxidation was significantly lower (P < 0.05) in obese compared with control children. In addition, the rate of exogenous carbohydrate oxidation expressed as a proportion of total carbohydrate oxidation was positively related to the body fat of the children (r = 0.68, P < 0.01). The study suggests that in the postprandial phase, a smaller proportion of carbohydrate oxidation is accounted for by glycogen breakdown in obese children. The sparing of endogenous glycogen may result from decreased glycogen turnover already present at an early age.
Resumo:
The objective of this work was to evaluate the diversity and genetic relationships between lines and varieties of the sweet sorghum (Sorghum bicolor) germplasm bank of the National Institute for Forestry, Agriculture and Livestock Research, Mexico, using AFLP and SSR markers. The molecular markers revealed robust amplification profiles and were able to differentiate the 41 genotypes of sweet sorghum evaluated. Analysis of the frequency and distribution of polymorphic fragments allowed for the detection of unique (AFLP) and rare (SSR) alleles in several genotypes (RBSS‑8, RBSS‑9, RBSS‑25, RBSS‑32, and RBSS‑37), indicating that these markers may be associated with a feature that has not yet been determined or may be useful for the identification of these genotypes. The genetic relationships indicated the presence of at least two types of sweet sorghum: a group of modern genotypes used for sugar and biofuel production, and another group consisting of historic and modern genotypes used for the production of syrups. Sweet sorghum genotypes may be used to develop new varieties with higher sugar and juice contents.
Resumo:
The remarkable plasticity of their architecture allows plants to adjust growth to the environment and to overcome adverse conditions. Two examples of environmental stresses that drastically affect shoot development are imminent shade and high temperature. Plants in crowded environments and plants in elevated ambient temperature display very similar phenotypic adaptations of elongated hypocotyls in seedlings and elevated and elongated leaves at later developmental stages. The comparable growth responses to shade and high temperature are partly regulated through shared signaling pathways, of which the phytohormone auxin and the phytochrome interacting factors (PIFs) are important components. During both shade- and temperature-induced elongation growth auxin biosynthesis and signaling are upregulated in a PIF-dependent manner. In this review we will discuss recent progress in our understanding of how auxin mediates architectural adaptations to shade and high temperature.
Resumo:
The objective of this work was to evaluate the agronomic traits and the popping expansion index of three Brazilian popcorn cultivars under different row spacings and plant populations. The trials were performed during two crop seasons, under field conditions. The experimental design used was a randomized complete block, in a split-split plot, with 27 treatments and four replicates. Treatments were represented in a triple factorial arrangement: three row spacings (0.40, 0.60, and 0.80 m), three plant populations (40,000, 60,000, and 80,000 plants per hectare), and three popcorn cultivars (IAC-TC 01, IAC 12, and Zelia). The increase in plant population causes a reduction in the number of grains per ear, lower prolificacy, and grain weight loss. Cultivar grain yield is affected by row spacing and popcorn plant population. Cultivar IAC 12 shows highest grain yield under row spacings of 0.40 and 0.60 m and plant population between 60,000 and 80,000 plants per hectare. The popping expansion index is not affected by row spacing or plant population.