930 resultados para Structural maintenance of chromosomes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The polymeric precursor method was successfully used to synthesize CoxZn7-xSbO12 (x = 0-7) powders. Pigments were evaluated using colorimetry, X-ray diffraction, UV-vis and infrared spectroscopy. The optical band gap values vary with the Co2+ substitution. These results suggest that the concomitant presence of Co and Zn in the spinel lattice leads to the rupture of the Vegard law, as well as other properties of the studied system, such as unit cell volume. The Co-richer samples display a higher absorbance than the Co-lean samples. The high absorption of the Co7Sb2O12 sample at most of the visible region makes this compound a candidate for a black pigment. It was shown that color depends on the site where the chromophore ion is located, in agreement with the ligand field theory. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural evolution of aerogels prepared from TEOS sono-hydrolysis was studied as a function of the temperature of heat treatment up to 1100 degreesC by means of small angle X-ray scattering (SAXS) and density measurements. The mass fractal structure of the original wet sonogel (with scattering exponent alpha similar to 2.2) apparently transforms to a surface fractal structure in a length scale lesser than similar to1.5 nm, upon the process resulting in aerogel. Such a structural transformation is interpreted by the formation of new particles with characteristic dimension of similar to1.5 nm, with rough boundaries or electronic density fluctuations (or ultra-micropores) in their interior. The structural arrangement of these particles seem to preserve part of mass fractal characteristics of the original wet sonogel, now in a length scale greater than similar to1.5 nm. The electronic density heterogeneities in the particles start to be eliminated at around 800 degreesC and, at 900 degreesC, the particles become perfectly homogeneous, so the structure can be described as a porous structure with a porosity of similar to68% with similar to9.0 nm mean size pores and similar to4.3 nm mean size solid particles. Above 900 degreesC, a vigorous viscous flux sintering process sets in, eliminating most of the porosity and increasing rapidly the bulk density in an aerogel-glass transformation. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bottleneck for the complete understanding of the structure-function relationship of flexible membrane-acting peptides is its dynamics. At the same time, not only the structure but also the dynamics are the key points for their mechanism of action. Our model is PW2, a TRP-rich, cationic peptide selected from phage display libraries that shows anticoccidial activity against Eimeria acervulina. In this manuscript we used a combination of several NMR techniques to tackle these difficulties. The structural features of the membrane-acting peptide PW2 was studied in several membrane mimetic environments: we compared the structural features of PW2 in SDS and DPC micelles, that were reported earlier, with the structure properties in different lipid vesicles and the peptide free in water. We were able to unify the structural information obtained in each of these systems. The structural constraints of the peptide free in water were fundamental for the understanding of plasticity necessary for the membrane interaction. Our data suggested that the WWR sequence is the region responsible for anchoring the peptide to the interfaces, and that this same region displays some degree of conformational order in solution. For PW2, we found that affinity is related to the aromatic region, by anchoring the peptide to the membrane, and specificity is related to the N- and C-termini, which are able to accommodate in the membrane due to its plasticity. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single-phase perovskite 0.9Pb(Mg1/3Nb2/3)O-3-0.1PbTiO(3) (PMN-PT) powders were prepared by using a Ti-modified columbite precursor (MNT) obtained by the polymeric precursor method. The innovation consists in the preparation of Ti-modified columbite in order to react directly with a stoichiometric amount of PbO to obtain pyrochlore-free PMN-PT powders. It has been shown that titanium oxide forms a solid solution with columbite (MN) and does not affect the obtaining of a single-phase columbite precursor. Thus, a high amount of perovskite phase can be obtained by reaction with PbO at 800 degreesC for 2 h. Effects of K and Li additives on the structure of MNT and PMN-PT were studied. X-ray diffraction studies were carried out to verify the phase formation at each processing step and these data were used for structural refinement by the Rietveld method. Both K and Li additives increase the crystallinity of MNT powders, being this effect more intense for the Li-doped samples. For PMN-PT samples the additives cause an insignificant decrease in the amount of perovskite phase. The morphology of the PMN-PT powder depends on the type of the additive. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of dopants commonly used in SnO2 varistor ceramics, such as CoO, Cr2O3 or Nb2O5, on the structural properties of SnO2 was investigated. Several SnO2-based ceramics containing only one of the dopants were prepared and characterized. Spectroscopic investigations [visible, near infrared (IR) and IR region] were performed to obtain information about dopants valence states inside the ceramics, as well as about their influence on electronic structure of the material. Structural properties were investigated by X-ray diffraction analysis and mechanisms of dopant incorporation were proposed. Obtained results were confirmed with results of the electrical measurements. Microstructural changes in doped ceramics were investigated by scanning electron microscopy (SEM) analysis that showed great differences in densities, grain size, and morphology of the SnO2 ceramics depending on type of dopants and their distribution. (C) 2004 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superconductor films of the BSCCO system have been grown by dip coating technique with good success. The chemical method allows us to grow high temperature superconductor thin films to get better control of stoichiometry, large areas and is cheaper than other methods. There is a great technological interest in growth oriented superconductor films due anisotropic characteristics of superconductor materials of high critical temperature, specifically the cuprates, as we know that the orientation may increase the electrical transport properties. Based on this, the polymeric precursor method has been used to obtain thin films of the BSCCO system. In this work we have applied that method together with the deposition technique known as dip coating to obtain Bi-based superconductor thin films, specifically, Bi1.6Pb0.4Sr2.0C2.0Cu3.0Ox+8, also known as 2223 phase with a critical temperature around 110 K. The films with multilayers have been grown on crystalline substrates of LaAlO3 and orientated (100) after being heat treated around 790 degrees C - 820 degrees C in lapse time of 1 hour in a controlled atmosphere. XRD measurements have shown the presence of a crystalline phase 2212 with a critical temperature around 85 K with (001) orientation, as well as a small fraction of 2223 phase. SEM has shown a low uniformity and some cracks that maybe related to the applied heat treatment. WDS has also been used to study the films composition. Different heat treatments have been used with the aim to increase the percentage of 2223 phase. Measurements of resistivity confirmed the presence of at least two crystalline phases, 2212 and 2223, with T-c around 85 K and 110 K, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vitreous samples were prepared in the (100 2 x) NaPO3-x WO3 (0 <= x <= 70) glass forming system using conventional melting-quenching methods. The structural evolution of the vitreous network was monitored as a function of composition by thermal analysis, Raman spectroscopy and high resolution one- and two-dimensional P-31 solid state NMR. Addition of WO3 to the NaPO3 glass melt leads to a pronounced increase in the glass transition temperatures, suggesting a significant increase in network connectivity. At the same time Raman spectra indicate that up to about 30 mol% WO3 the tungsten atoms are linked to some non-bridging oxygen atoms (W-O- or W=O bonded species), suggesting that the network modifier sodium oxide is shared to some extent between both network formers. W-O- W bond formation occurs only at WO3 contents exceeding 30 mol%. P-31 magic angle spinning (MAS)-NMR spectra, supported by two-dimensional J-resolved spectroscopy, allow a clear distinction between species having two, one, and zero P-O-P linkages. The possible formation of some anionic tungsten sites suggested from the Raman data implies an average increase in the degree of polymerization for the phosphorus species, which would result in diminished P-31/Na-23 interactions. This prediction is indeed confirmed by P-31{Na-23} and Na-23{P-31} rotational echo double resonance (REDOR) NMR results, which indicate that successive addition of WO3 to NaPO3 glass significantly diminishes the strength of phosphorus-sodium dipole-dipole couplings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantitative phase analysis was made of LiXCoO2 powders obtained by two distinct chemical methodologies at different temperatures (from 400 to 700degreesC). A phase analysis was made using Rietveld refinements based on X-ray diffraction data, considering the LiXCoO2 powders as a multiphase system that simultaneously contained two main phases with distinct, layered and spinel-type structures. The sults showed the coexistence of both structures in LiXCoO2 obtained at low temperature (400 and 500degreesC), although only the layered structure was detected at higher temperatures (600 and 700degreesC, regardless of the chemical powder process employed. The electrochemical performance, evaluated mainly by the cycling reversibility of LiXCoO2 in the form of cathode insertion electrodes, revealed that there is a close correlation between structural features and the electrochemical response, with one of the redox processes (3.3 v/3.9 v) associated only with the presence of the spinel-type structure. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of doxorubicin-induced cardiotoxicity remains controversial. Wistar rats (n=96) were randomly assigned to a control (C), lycopene (L), doxorubicin (D), or doxorubicin+lycopene (DL) group. The L and DL groups received lycopene (5 mg/kg body wt/day by gavage) for 7 weeks. The D and DL groups received doxombicin (4 mg/kg body wt intraperitoneally) at 3, 4, 5, and 6 weeks and were killed at 7 weeks for analyses. Myocardial tissue lycopene levels and total antioxidant performance (TAP) were analyzed by HPLC and fluorometry, respectively. Lycopene metabolism was determined by incubating H-2(10)-lycopene with intestinal mucosa postmitochondrial fraction and lipoxygenase and analyzed with HPLC and APCI mass spectroscopy. Myocardial tissue lycopene levels in DL and L were similar. TAP adjusted for tissue protein were higher in myocardium of D than those of C (P=0.002). Lycopene metabolism study identified a lower oxidative cleavage of lycopene in D as compared to those of C. Our results showed that lycopene was not depleted in myocardium of lycopene-supplemented rats treated with doxorubicin and that higher antioxidant capacity in myocardium and less oxidative cleavage of lycopene in intestinal mucosa of doxorubicin-treated rats suggest an antioxidant role of doxombicin rather than acting as a prooxidant. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of addition of different amounts of acetylacetone (acacH) on the species formed at room temperature and after thermohydrolysis at 70 degreesC for 30 and 120 min of ethanolic SnCl4.5H(2)O solutions is followed by EXAFS spectroscopy at the Sn K-edge. We show that thermohydrolyzed solutions are a mixture of SnO2 nanoparticles and soluble tin polynuclear species. The complexation of the tin molecular precursors by acetylacetonate ligands is evidenced by H-1, C-13, and Sn-119 NMR spectroscopy and EXAFS for a acacH/Sn ratio higher than 2. Single crystals are isolated from solution and the structure, determined by X-ray diffraction, is built up from monomeric Cl-3(H2O)Sn(acac)-H2O units bridged together by hydrogen bonding. The acacH/Sn ratio in solution controls the polycondensation of the hydrolyzed species but not the crystallite size of the SnO2 nanoparticles (similar to2 nm). Because of the major presence of chelated tin mono- and dimeric complexes in solution for acacH/Sn > 2, the condensation is almost inhibited, meanwhile the decrease of amount of chelated complexes for the acacH/Sn < 2 gives rise to an increase of the number of nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the effect of sulfate, phosphate and nitrate complexing ligands on the structural features of amorphous xerogels and on the crystallization of metastable zirconia phases during the xerogel-ceramic conversion. Powdered samples were prepared by a sol-gel route using zirconyl chloride precursors chemically modified by complexing ligands. The structural evolution of ZrO2 phases as function of firing temperature was analyzed by XRPD, EXAFS and P-13 NMR/MAS. The experimental results show the formation of metastable t-ZrO2 during the low firing temperature of xerogels modified by sulfate or phosphate groups. The martensitic tetragonal-monoclinic transformation occurs during desorption of sulfate groups. The largest temperature interval of stability of metastable tetragonal zirconia was observed for phosphate-modified xerogels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic-plastic structural stability behaviour of arches is analysed in the present work.The application of the developed mathematical model, allows to determine the elastic-plastic equilibrium paths, looking for critical points, bifurcation or limit, along those paths, associated to the critical load, in case it comes to happen.The equilibrium paths in the elastic-plastic behaviour when compared with the paths in the linear elastic behaviour, may show that, due to influence of the material plasticity, modifications paths appear and consequently alterations in the values of its critical loads.