919 resultados para Storm surges.
Resumo:
CLIGEN是目前较全面产生降水要素(降水量、历时、达到最大降水强度的时间与降水总历时的比率、最大降水强度与平均降水强度的比率)的天气发生器,其生成降水要素的质量直接影响水文和农业响应模型的输出结果。利用黄土高原长武1957—2001年的日气象观测数据、王东沟流域1988—2001年的降水要素数据和CLIGEN生成的100年日气象数据,对CLIGEN模型产生日、月、年降水量的均值和方差、概率分布、降水极端值和降水历时、强度进行评估。结果表明:CLIGEN对日、月和年降水量均值的模拟效果较好,相对误差都不大于1.0%;对标准差的模拟结果偏低,相对误差的绝对值小于6.6%;没有模拟出日降水量的概率分布,但是较好地模拟出了月和年降水量的概率分布;对日、月和年最大降水量的模拟误差较大,表明CLIGEN对极值的模拟精度有待提高。CLIGEN很好地模拟出连续降水的频率,但是连续干旱天数在20 d以内的累积频率的平均相对误差为8.9%;CLIGEN产生的最大降水强度与平均降水强度的比率高于实测数据;相对于实测数据,CLIGEN模拟的降水历时和降水量具有相同的趋势,对小降水量或短历时的模拟结果偏高,对大降水量或长历时的模拟结...
Resumo:
Salt marsh-tidal creek systems as a coastal geomorphological unit represent an important natural resource. The present study on Jiangsu salt marshes, eastern China, shows that variations in tidal current velocities in salt marsh creeks are controlled by the local tidal wave characteristics and the bed slope and elevation of the salt marshes and creeks. Likewise, the tidal currents modify the geomorphology of the salt marsh-tidal creek systems by transporting sediments and causing erosion/deposition. Storm events, which appear to have cyclical changes in their intensity relating to sunspot activities, can affect the geomorphic evolution of such systems. Further, in response to accelerated sea-level rise, accretional rates on salt marshes may increase. The tidal creeks have the function of transporting water and sediment onto the salt marsh surface; further, the energy of tidal currents and waves are dissipated within the salt marsh-tidal creek system. Hence, this coastal system has a potential value for coastal protection.
Resumo:
A floating dust weather happened on March 11-12, 1995 over the Qingdao region. Its sources and throughput to the ocean were studied. The result indicated that the floating dust was caused by the dust storm that starred in northwestern China and developed in northern China. 21 x 10(6)t fine soil particles were carried to the ocean during the episode.
Resumo:
The Yellow Sea Warm Current (YSWC) is one of the principal currents in the Yellow Sea in winter. Former examinations on current activity in the Yellow Sea have not observed a stable YSWC because of the positioning of current meters. To further understand the YSWC, a research cruise in the southern Yellow Sea was carried out in the winter of 2006/2007. Five moorings with bottom-mounted acoustic Doppler current profilers (ADCP) were deployed on the western side of the central trough of the Yellow Sea. The existence and distributional features of the YSWC were studied by analyzing three ADCP moorings in the path of the YSWC in conjunction with conductivity-temperature-depth (CTD) data over the observed area in the southern Yellow Sea. The results show the following. (1) The upper layer of the YSWC is strongly influenced by winter cold surge; its direction and speed often vary along a south-north axis when strong cold surges arrive from the north. (2) The YSWC near the bottom layer is a stable northwest flowing current with a speed of 4 to 10 cm/s. By combining the analyses of the CTD data, we speculate that the core of the YSWC may lie near the bottom. (3) On a monthly average timescale, the YSWC is stably oriented with northward flow from the sea surface to the sea floor.
Resumo:
The response of the South China Sea (SCS) to Typhoon Imbudo was examined using POM model. The results indicated that SST decreased by 2-6 degrees C with a rightward-biased response as Typhoon Imbudo passed across the SCS. Due to a strong mixing process, the mixed layer (ML) depth deepened as much as 10-60 m and ML heat budget lost 824.78 W/m(2), which was OF dominated by the vertical mixing. By the response of upper ML heat transport, the temperature below the ML increased and oscillated near the inertial period. Furthermore, strong inertial currents were generated by the storm with the max currents up to 1.4 m/s in the upper ML.
Resumo:
Near-space, defined as the altitude region between 20 and 100 km, offers many capabilities that are not accessible for low Earth-orbit (LEO) satellites or airplanes because it is above storm and not constrained by orbital mechanics and high fuel consumption. Hence, a high flying speed can be obtained for the maneuvering vehicles operating in near-space. This offers a promising solution to simultaneous high-resolution and wide-swath synthetic aperture radar (SAR) imaging. As such, one near-space wide-swath SAR imaging technique is presented in this letter. The system configuration, signal model, and imaging scheme are described. An example near-space SAR system is designed, and its imaging performance is analyzed. Simulation results show that near-space maneuvering vehicle SAR indeed seems to be a promising solution to wide-swath SAR imaging.
Resumo:
本文研究了国际上刚刚兴起的海浪,天文潮及风暴潮耦合数值模式,考虑了天文潮与风暴潮的相互作用对海浪的影响(简称TSW)。研究表明,TSW的影响依不同的时间、地点和风力强弱而不同,在某些时刻和地点,TSW对波高的影响超过1M,对波向的影响达30#deg#。WTS的影响对天文潮与风暴潮耦合水位起调制作用,在风暴发生初期大一些,后期小一些。
Resumo:
基于国际水协会IWA发布的国际评价基准Benchmark,建立了与污水处理厂实际特性相近的标准仿真平台。对污水处理传统A2/O工艺做了合理改进,在不影响出水水质的情况下,取消内回流。应用该平台分别对晴天、雨天与暴雨三种天气的工艺过程模拟,验证了工艺改进的合理性。仿真结果表明,与传统A2/O工艺相比,出水指标差别不大,但污泥泵能耗降低约50%。
Resumo:
Magnetic storm is a kind of severe disturbances in the whole solar-earth electromagnetic space. It has significant effects on communication, electric power, oil transport pipe and human activities in space. Therefore, magnetic storms are worth for applications systems, not only being a favorable issue for scientists. In this paper, the spatial and temporal distributions of the magnetic fields produced by the magnetosphere-ionosphere current systems during storms are studied. Four parts are included in this paper decomposion of different disturbances with different origins, topological structure of the ring current, the asymmetric characteristics of the ring current, and the statistic peculiarities of the day-to-day variability (DTD) of Sq. 1 The decomposition of magnetic disturbances at mid-low latitudes and its evolutions during storms Transient variations in the geomagnetic field recorded at mid-low latitudes mainly include the storm-time variation (Dst), solar quiet daily variation (Sq) and disturbance daily variation (SD). With the data of the geomagnetic meridian chain observatories in China, 25 storms during the period of 1997 to 1999 have been analyzed. According to the features of different variations, a method of “three-steps decomposition” is developed by using the method of Natural Orthogonal Components (NOC), Correlation Analysis and Fourier Analysis to separate those three components in turn. The results show that, the first eigenmode by the MNOC clearly describing the special distribution and temporal evolution of storm-time variation, in addition, Correlation Analysis and Fourier Analysis offer a useful method to extract the Sq and SD variations. The latitudinal shift of the Sq current focus seems to be the principal reason of the day-to-day variaitons in the daily range of Sq. The magnitude of SD reaches a maximum during the main phase, and then gradually decreases. 2 The topology structure of the ring current during storms Both the mechanism of the ring current and the geomagnetic data suggest that the central plane of the ring current is declining to the geomagnetic equator plane with a tilt angle δ. Using the H and Z component data at two stations in a meridian chain, we deduce a new parameter describing the invariable peculiarity of different storms. Then the δ angle is calculated by using the data from a meridian chain and tested with the ERC model. Finally the deduced tilt angles are used to modify Dst index. 3 The asymmetric characteristics of the ring current during storms The variations of the geomagnetic field at mid-low latitudes show a significant dawn-dusk asymmetry, resulting from the superposition of the fields from the symmetric ring current and the partial ring current. On the basis of the data from the 20°E, 30°E meridian chains and 30°N latitudinal chain, the dawn-dusk asymmetry is investigated by using three methods, namely, statistic analysis, ring current model calculation and typical event analysis. This characteristic implies the asymmetry of the spatial distribution of the ring current. In addition, during the main phase after the sudden commencement (SC), H field increases and reaches maximum around noontime, implying the effect of the Chapman-Ferraro current. 4 The statistic characteristics of the day-to-day variability and its mechanism The day-to-day variability of the geomagnetic Sq field is studied by using the magnetic data from a meridian chain of magnetometers along 120° E longitude. The method of NOC is applied to separate the Sq variation from complicated disturbances. The first eigenmode with the largest eigenvalue represents fairly well the Sq variation with a conspicuous day-to-day variability in the daily range. For the stations on the same north- or south-side of the Sq current system focus, the day-to-day variations show a positive correlation. In contrast, for the stations on the different sides of the Sq focus, they show a negative correlation, suggesting an important role of latitudinal shift of the Sq current system focus to the day-to-day variability of the Sq daily range. The Sq daily range is correlated with the magnetic indices Ap and Dst in a peculiar way: on some severe disturbed days, noticeably enhancements of the Sq are observed, implying increases of the ionospheric conductivities and/or tidal wind velocities; on other severe disturbed days, however, dramatically reduced Sq variations occur, suggesting dominant effects of the ‘disturbance dynamo’ process.
Resumo:
In this dissertation, we investigated two types of traveling ionospheric disturbances (TIDs)/gravity waves (GWs) triggered separately by auroral energy input during super geomagnetic storms and solar terminator (ST) under quiet geomagnetic conditions (kp<3+) using TEC measurements from the global network of GPS receivers. Research into the generation and propagation of TIDs/GWs during storms greatly enhance our understandings on the evolution processes of energy transportation from the high-latitude’s magnetosphere to the low-latitude ionosphere and the conjugated effect of TIDs propagation between the northern and southern hemispheres. Our results revealed that the conjugacy of propagation direction between the northern and southern hemispheres was subject to the influence of Coriolis force. We also figure out the evolution processes of ionospheric disturbances at the global scale. These are important topics that had not been well addressed previously. In addition, we also obtained thee wave structures of medium scale TIDs excited by the solar terminator (ST) moving over the northern America and physical mechanisms involved. Our observations confirm that the ST is a stable and repetitive source of ionospheric wave disturbances and the evidence of solar terminator generated disturbances has been demonstrated experimentally via the GPS TEC measurement. The main researches and results of this dissertation are as follows. First, the global traveling ionospheric disturbances (TIDs) during the drastic magnetic storms of October 29–31, 2003 were analyzed using the Global Position System (GPS) total electron content (TEC) data observed in the Asian-Australian, European and North American sectors. We collected the most comprehensive set of the TEC data from more than 900 GPS stations on the International GNSS Services (IGS) website and introduce here a strategy that combines polynomial fitting and multi-channel maximum entropy spectral analysis to obtain TID parameters. Moreover, in collaboration with my thesis advisor, I have developed an imaging technique of 2-dimensional map of TIDs structures to obtain spatial and temporal maps of large scale traveling ionospheric disturbances (LSTIDs). The clear structures of TEC perturbations map during the passage of TIDs were displayed. The results of our study are summarized as follows: (1) Large-scale TIDs (LSTIDs) and medium-scale TIDs (MSTIDs) were detected in all three sectors after the sudden commencement (SC) of the magnetic storm, and their features showed longitudinal and latitudinal dependences. The duration of TIDs was longer at higher latitudes than at middle latitudes, with a maximum of about 16 h. The TEC variation amplitude of LSTIDs was larger in the North American sector than in the two other sectors. At the lower latitudes, the ionospheric perturbations were more complicated, and their duration and amplitude were relatively longer and larger. (2) The periods and phase speeds of TIDs were different in these three sectors. In Europe, the TIDs propagated southward; in North America and Asia, the TIDs propagated southwestward; in the near-equator region, the disturbances propagated with the azimuth (the angle of the propagation direction of the LSTIDs measured clockwise from due north with 0°) of 210° showing the influence of Coriolis force; in the Southern Hemisphere, the LSTIDs propagated conjugatedly northwestward. Both the southwestward and northeastward propagating LSTIDs are found in the equatorial region. These results mean that the Coriolis effect cannot be ignored for the wave propagation of LSTIDs and that the propagation direction is correlated with the polar magnetic activity. (3) The day (day of year: 301) before the SC (sudden commencement) of magnetic storm, we observed a sudden TEC skip disturbances (±10 TECU). It should be a response for the high flux of proton during the solar flare event, but not the magnetic storms. Next, the most comprehensive and dense GPS network’s data from North-America region were used in this paper to analyze the medium scale traveling ionospheric disturbances (MSTIDs) which were generated by the moving solar terminator during the quiet days in 2005. We applied the multi-channel maximum entropy spectral analysis to calculated TID parameters, and found that the occurrence of ST-MSTIDs depends on the seasonal variations. The results of our study are summarized as follows: (1) MSTIDs stimulated by the moving ST (ST-MSTIDs) are detected at mid-latitudes after the passage of the solar terminator with the life time of 2~3 hours and the variation amplitude of 0.2~0.8 TECU. Spectral analysis indicated that the horizontal wavelength, average period, horizontal phase velocity of the MSTIDs are around 300±150 km,150±80 m/s and 25±15 min, respectively. In addition, ST-MSTIDs have wave fronts elongating the moving ST direction and almost parallel to ST. (2) The statistical results demonstrate that the dusk MSTIDs stimulated by ST is more obvious than the dawn MSTIDs in summer. On the contrary, the more-pronounced dawn MSTIDs occurs in winter. (3) Further analysis indicates that the seasonal variations of ST-MSTIDs occurrence frequency are most probably related to the seasonal differences of the variations of EUV flux in the ionosphere region and recombination process during sunrise and sunset period at mid-latitudes. Statistical study of occurrence characteristics of TIDs using the GPS network in North-American and European during solar maximum, In conclusion, statistical studies of the propagation characteristics of TIDs, which excited by the two common origins including geomagnetic storms and moving solar terminator, were involved with global GPS TEC databasein this thesis. We employed the multichannel maximum entropy spectral analysis method to diagnose the characteristics of propagation and evolvement of ionospheric disturbances, also, the characteristics of their regional distribution and climatological variations were revealed by the statistic analysis. The results of these studies can improve our knowledge about the energy transfer in the solar-terrestrial system and the coupling process between upper and lower atmosphere (thermosphere-ionosphere-mesosphere). On the other hand, our results of the investigation on TIDs generated by particular linear origin such as ST are important for developing ionospheric irregularity physics and modeling the transionosphere radio wave propagation. Besides, the GPS TEC representation of the ST-generated ionospheric structure suggests a better possibility for investigating this phenomenon. Subsequently, there are scientific meaning of the result of this dissertation to deeply discuss the energy transfer and coupling in the ionosphere, as well as realistic value to space weather forecast in the ionosphere region.
Resumo:
The space currents definitely take effects on electromagnetic environment and also are scientific highlight in the space research. Space currents as a momentum and energy provider to Geospace Storm, disturb the varied part of geomagnetic field, distort magnetospheric configuration and furthermore take control of the coupling between magnetosphere and ionosphere. Due to both academic and commercial objectives above, we carry on geomagnetic inverse and theoretical studies about the space currents by using geomagnetic data from INTERMAGNET. At first, we apply a method of Natural Orthogonal Components (NOC) to decomposition the solar daily variation, especially for (solar quiet variation). NOC is just one of eign mode analysis, the most advantage of this method is that the basic functions (BFs) were not previously designated, but naturally came from the original data so that there are several BFs usually corresponding to the process really happened and have more physical meaning than the traditional spectrum analysis with the fixed BFs like Fourier trigonometric functions. The first two eign modes are corresponding to the and daily variation and their amplitudes both have the seasonal and day-to-day trend, that will be useful for evaluating geomagnetic activity indices. Because of the too strict constraints of orthogonality, we try to extend orthogonal contraints to the non-orthogonal ones in order to give more suitable and appropriate decomposition of the real processes when the most components did not satisfy orthogonality. We introduce a mapping matrix which can transform the real physical space to a new mathematical space, after that process, the modified components which associated with the physical processes have satisfied the orthogonality in the new mathematical space, furthermore, we can continue to use the NOC decomposition in the new mathematical space, and then all the components inversely transform back to original physical space, so that we would have finished the non-orthogonal decomposition which more generally in the real world. Secondly, geomagnetic inverse of the ring current’s topology is conducted. Configurational changes of the ring current in the magnetosphere lead to different patterns of disturbed ground field, so that the global configuration of ring current can be inferred from its geomagnetic perturbations. We took advantages of worldwide geomagnetic observatories network to investigate the disturbed geomagnetic field which produced by ring current. It was found that the ring current was not always centered at geomagnetic equator, and significantly deviated off the equator during several intense magnetic storms. The deviation owing to the tilting and latitudinal shifting of the ring current with respect to the earth’s dipole can be estimated from global geomagnetic survey. Furthermore those two configurational factors which gave a quantitative description of the ring current configuration, will be helpful to improve the Dst calibration and understand the dependence of ring current’s configuration on the plasma sheet location relative to the equator when magnetotail field warped. Thirdly, the energization and physical acceleration process of ring current during magnetic storm has been proposed. When IMF Bz component increase, the enhanced convection electric field drive the plasma injection into the inner magnetosphere. During the transport process, a dynamic heating is happened which make the particles more ‘hot’ when the injection is more deeply inward. The energy gradient along the injection path is equivalent to a kind of force, which resist the plasma more earthward injection, as a diamagnetic effect of the magnetosphere anti and repellent action to the exotically injected plasma. The acceleration efficiency has a power law form. We use analytical way to quantitatively describe the dynamical process by introducing a physical parameter: energization index, which will be useful to understand how the particle is heated. At the end, we give a scheme of how to get the from storm time geomagnetic data. During intense magnetic storms, the lognormal trend of geomagnetic Dst decreases depend on the heating dynamic of magnetosphere controlling ring current. The descending pattern of main phase is governed by the magnetospheric configuration, which can be describled by the energization index. The amplitude of Dst correlated with convection electric field or south component of the solar wind. Finally, the Dst index is predicted by upstream solar wind parameter. As we known space weather have posed many chanllenges and impacts on techinal system, the geomagnetic index for evaluating the activity space weather. We review the most popular Dst prediction method and repeat the Dst forecasting model works. A concise and convnient Key Points model of the polar region is also introduced to space weather. In summary, this paper contains some new quantitative and physical description of the space currents with special focus on the ring current. Whatever we do is just to gain a better understanding of the natural world, particularly the space environment around Earth through analytical deduction, algorithm designing and physical analysis, to quantitative interpretation. Applications of theoretical physics in conjunction with data analysis help us to understand the basic physical process govering the universe.
Resumo:
The magnetosphere-ionosphere coupling is mainly manifested by the trans- porting processes of energy into the ionosphere , the energy is carried by solar wind and firstly accumulate at the magnetosphere, and the coupling processes also significantly include the interaction between the magnetosphere and ionosphere for mass and energy. At the quiet condition, energy is delivered by the large-scale convection of the geomagnetic field; the huge energy from solar wind bulk will be injected into and consumed at the near magnetosphere and ionosphere by the geomagnetic storm and substorm activities. Aurorae and FACs (Field-aligned currents) are the important phenomena in the coupling processes. In the present work, firstly, we analyze the activity characteristics of auroral precipitating particle, secondly, we study the distribution characters of large-scale field aligned currents (LS FACs) at storm-time using the observations from different satellites at different altitudes. Finally, we investigate the evolution of the geomagnetic field configuration at the nightside sector on the onset of the expansion phase in a substorm event, the substorm event happened at 0430UT to 0630UT on 8th Nov. 2004. The main results as follows: At the first, the data of the estimated power input (EPI) of auroral particles from NOAA/POES (Polar orbiting environmental satellite) for some 30 years have been analyzed. The variation tendencies of the EPI generally coincide with aa, AE and Dst indices. The annual variation of EPI shows equinox peaks and an asymmetric-activity with a higher peak in the winter-hemisphere than in the summer-hemisphere. The diurnal UT variations are different from north and south hemisphere: for north hemisphere, the peak appears at 1200UT, and the relative deviation is 22% to the daily average of the north hemisphere. For south hemisphere, the maximal deviation is 22% at 2000UT. So the diurnal variation of EPI is more dominant than the annual variation which maximal deviation is 3% to 12% for different seasons. Studies on correlations of the hourly average of EPI, Pa, with AE and Dst indices show a correlation coefficient r=0.74 of Pa and AE, and r=-0.55 of Pa and Dst. The hourly EPIs for north and south polar regions, NPa and SPa, show a north-south asymmetry with a higher correlation of SPa and AE (or Dst). Time delays of EPI with respect to magnetic indices are examined, the maximum correlation coefficient of Pa with AE (r=0.78) occurs when the time delay =0, suggesting a synchronous activity of auroral electrojet and auroral precipitating particles, while =1-2h, the correlation coefficient of Pa with Dst is maximum (r=0.57), suggesting that the activity of auroral particle precipitating may influence the ring current on some extent. Sencondly, we use the high-resolution magnetic field vector data of the CHAMP satellite to investigate the distribution of large-scale FACs during the great magnetic storm on 7th to 8th Nov. 2004. The results show that, whether in the northern or southern hemisphere, the number and density of large-scale FACs during the main-phase are more and bigger than these during the recover-phase, and the number of large-scale FACs in morning sector obviously is more than that in afternoon sector. In terms of the magnetic indices, we find that large-scale FACs in morning sector significantly affected by the substorm activities, while in afternoon sector the large-scale FACs mainly indicate the fluctuations of the ring-current in storm time. Accordingly to the former studies, similarly, we find that in the morning sector, the scale of the large-scale FACs move to the high-latitude region, and in the afternoon sector, large-scale FACs distinctly expand to the low-latitude region. During the time periods that the NOAA/POES auroral precipitating particle power data temporally correspond to the large-scale FACs, the more the power of auroral particle is, the more and bigger the number and density of FACs are. At the same time, we use the magnetic field vector data of POLAR obtain a good form of region 1, region 2, and three pieces of cusp FACs during a single transit at 1930UT-2006UT on 07th. And the characteristics of simultaneous electric field and energy particles observations on Polar are coincide with the five FACs pieces. Finally, by means of the observation of Cluster 4 and Goes 10、 Goes 12, we analyze the evolution process of the change of the magnetic field configuration at night sector at the expansion phase of a substorm event which happened during 0430UT to 0630UT on 8th Nov. 2004, we find that the times of the beginning of the polarizations of magnetic field are observed from Goes 10 to Goes 12 then to Cluster 4. So, at the synchronous orbit ( 6.6 RE) to 10RE distance scale of the neutral sheet, the current disruption spread tailward. Simultaneously, the strengthen of the FACs deduced from these satellites’ magnetic field observations are almost consistent with the times of polarizations, as well as the high energy particles injection and the electric field dominant variation. The onset times determined by the magnetic field polarizations from these satellites are all ahead of the onset time that confirmed from the auroral electrojet indices. So, these characters of different observations can be used as the criterions to determine the onset time for the substorms of such type as we studied.
Resumo:
On the issue of geological hazard evaluation(GHE), taking remote sensing and GIS systems as experimental environment, assisting with some programming development, this thesis combines multi-knowledges of geo-hazard mechanism, statistic learning, remote sensing (RS), high-spectral recognition, spatial analysis, digital photogrammetry as well as mineralogy, and selects geo-hazard samples from Hong Kong and Three Parallel River region as experimental data, to study two kinds of core questions of GHE, geo-hazard information acquiring and evaluation model. In the aspect of landslide information acquiring by RS, three detailed topics are presented, image enhance for visual interpretation, automatic recognition of landslide as well as quantitative mineral mapping. As to the evaluation model, the latest and powerful data mining method, support vector machine (SVM), is introduced to GHE field, and a serious of comparing experiments are carried out to verify its feasibility and efficiency. Furthermore, this paper proposes a method to forecast the distribution of landslides if rainfall in future is known baseing on historical rainfall and corresponding landslide susceptibility map. The details are as following: (a) Remote sensing image enhancing methods for geo-hazard visual interpretation. The effect of visual interpretation is determined by RS data and image enhancing method, for which the most effective and regular technique is image merge between high-spatial image and multi-spectral image, but there are few researches concerning the merging methods of geo-hazard recognition. By the comparing experimental of six mainstream merging methods and combination of different remote sensing data source, this thesis presents merits of each method ,and qualitatively analyzes the effect of spatial resolution, spectral resolution and time phase on merging image. (b) Automatic recognition of shallow landslide by RS image. The inventory of landslide is the base of landslide forecast and landslide study. If persistent collecting of landslide events, updating the geo-hazard inventory in time, and promoting prediction model incessantly, the accuracy of forecast would be boosted step by step. RS technique is a feasible method to obtain landslide information, which is determined by the feature of geo-hazard distribution. An automatic hierarchical approach is proposed to identify shallow landslides in vegetable region by the combination of multi-spectral RS imagery and DEM derivatives, and the experiment is also drilled to inspect its efficiency. (c) Hazard-causing factors obtaining. Accurate environmental factors are the key to analyze and predict the risk of regional geological hazard. As to predict huge debris flow, the main challenge is still to determine the startup material and its volume in debris flow source region. Exerting the merits of various RS technique, this thesis presents the methods to obtain two important hazard-causing factors, DEM and alteration mineral, and through spatial analysis, finds the relationship between hydrothermal clay alteration minerals and geo-hazards in the arid-hot valleys of Three Parallel Rivers region. (d) Applying support vector machine (SVM) to landslide susceptibility mapping. Introduce the latest and powerful statistical learning theory, SVM, to RGHE. SVM that proved an efficient statistic learning method can deal with two-class and one-class samples, with feature avoiding produce ‘pseudo’ samples. 55 years historical samples in a natural terrain of Hong Kong are used to assess this method, whose susceptibility maps obtained by one-class SVM and two-class SVM are compared to that obtained by logistic regression method. It can conclude that two-class SVM possesses better prediction efficiency than logistic regression and one-class SVM. However, one-class SVM, only requires failed cases, has an advantage over the other two methods as only "failed" case information is usually available in landslide susceptibility mapping. (e) Predicting the distribution of rainfall-induced landslides by time-series analysis. Rainfall is the most dominating factor to bring in landslides. More than 90% losing and casualty by landslides is introduced by rainfall, so predicting landslide sites under certain rainfall is an important geological evaluating issue. With full considering the contribution of stable factors (landslide susceptibility map) and dynamic factors (rainfall), the time-series linear regression analysis between rainfall and landslide risk mapis presented, and experiments based on true samples prove that this method is perfect in natural region of Hong Kong. The following 4 practicable or original findings are obtained: 1) The RS ways to enhance geo-hazards image, automatic recognize shallow landslides, obtain DEM and mineral are studied, and the detailed operating steps are given through examples. The conclusion is practical strongly. 2) The explorative researching about relationship between geo-hazards and alteration mineral in arid-hot valley of Jinshajiang river is presented. Based on standard USGS mineral spectrum, the distribution of hydrothermal alteration mineral is mapped by SAM method. Through statistic analysis between debris flows and hazard-causing factors, the strong correlation between debris flows and clay minerals is found and validated. 3) Applying SVM theory (especially one-class SVM theory) to the landslide susceptibility mapping and system evaluation for its performance is also carried out, which proves that advantages of SVM in this field. 4) Establishing time-serial prediction method for rainfall induced landslide distribution. In a natural study area, the distribution of landslides induced by a storm is predicted successfully under a real maximum 24h rainfall based on the regression between 4 historical storms and corresponding landslides.
Resumo:
As a key issue of ionospheric weather study, systemic studies on ionospheric storms can not only further improve our understanding of the response of the ionosphere to solar and geomagnetic disturbances, but also help us to reveal the chemical, dynamic and electro-dynamic mechanisms during storms. Empirical modelling for regional ionospheric storm is also very useful, because it can provide us with tools and references for the forecasting and further practical application of ionospheric activity. In this thesis, we focus on describing and forecasting of ionospheric storms at middle and low latitudes. The main points of my investigations are listed as follows. (1) By using magnetic storms during the period over 50 years, the dependence of the type, onset time and time delay of the ionospheric storms on magnetic latitude, season and local time at middle and low latitudes in the East-Asian sector are studied. The results show that the occurrences of the types of ionospheric disturbances differ in latitude and season. The onset of the ionospheric storms depends on local time. At middle latitudes, most negative phase onsets are within the local time interval from night to early morning, and they rarely occurred in the local noon and afternoon sectors. At low latitudes, positive phases commence most frequently in the daytime sector as well as pre-midnight sector. The average time delays for both the positive and negative ionospheric storms increase with descending latitudes. The time delay has significant dependence on the local time of main phase onset (MPO). The time delay of positive response is shorter for daytime MPO and longer for night-time MPO, whereas the opposite applies for negative response. (2) Based on some previous researches, a primary empirical model for mid-latitude ionospheric disturbance is set up. By fitting to the observed data, we get a high accuracy with a mean RMSE of only 12-14% in summer and equinox. The model output has been compared with the output of STORM model, and the results show that, our model is much better than STORM in summer and a little better for some mid-latitude stations at equinox. Especially, for the type of two-step geomagnetic storm, our model can present twice descending of foF2 very well. In addition, our model can forecast positive ionospheric storms.
Resumo:
Two problems are studied in this thesis, the relationship of the magneto-spheric - ionospheric current systems during storms, and the effects of the main field to the space environment. The thesis includes three parts. 1. Magnetic disturbances caused by magnetospheric - ionospheric current systems Transient variations of the geomagnetic field at middle-low latitudes are mainly caused by the ionospheric dynamo current (IDC), the symmetric ring current (SRC), the partial ring current-region II field-aligned current-ionospheric current system (PRFI), and the region I field-aligned current-ionospheric current system (FACI). The storm on May 1 ~ 6, 1998 is analyzed. Firstly, the S_q-field caused by IDC current is removed by using the modified Hibberd's method in which the effect of SRC is considered. The neglect of SRC-field can give as much as 40% error in S_q-field evaluation. Secondly, the disturbance fields at the middle and low latitudes are separated according to their origins. As a result, the disturbance caused by FACI-current is an important part of the asymmetrical depression of H-component in middle and low latitudes during storms. The results show that the relative intensity of the Sq-field increases in the main phase of the storm and decreases in the recovery phase. The latitudinal gradient of the Sq-field is positive during the whole storm. The storm of May 1 ~ 6, 1998 contains two events. In the first event on May 2, the SRC-field is similar to Dst index. But in the second event on May 4 ~ 5, the SRC-field delays to Dst index, and the SRC-field depresses while the PRFI- and FACI-fields recovery. 2. Analysis of S_q~p variation in CGM coordinates In order to study the conjugation of geomagnetic variations between northern and southern hemispheres, we use the corrected geomagnetic coordinates (CGM) instead of the geomagnetic coordinates (GM) to analyze the S_q~P equivalent current system. The CGM coordinates are built up by International Geomagnetic Reference Field (IGRF) model. The S_q~p variations and equivalent current systems in the northern and southern polar regions are more symmetrical in CGM coordinates than in GM co-ordinates. This fact implies that the current distributions in polar regions are governed by the configuration of the geomagnetic field lines. As the elaborate structure of S_q~p current system in quiet time is obtained, we summarize the seasonal variation of the electrojet in quiet time. 3. The magnetospheric configuration of non-parallel-dipole model The magnetospheric configurations are calculated for two possible geomag-netic field models during the geomagnetic field reversals. These models are the dipole field with the axis to the sun and the quadrupole field model. We use the finite element method to solve the magnetic equation, and use the surface evolution method to solve the equilibrium equation. The results show that the main field greatly affects the space environment.