982 resultados para Stokes, Teorema de
Resumo:
The effect of the translational nonequilibrium on performance modeling of flowing chemical oxygen-iodine lasers (COIL) is emphasized in this paper. The spectral line broadening (SLB) model is a basic factor for predicting the performances of flowing COIL. The Voigt profile function is a well-known SLB model and is usually utilized. In the case of gas pressure in laser cavity less than 5 torr, a low pressure limit expression of the Voigt profile function is used. These two SLB models imply that ail lasing particles can interact with monochromatic laser radiation. Basically, the inhomogeneous broadening effects are not considered in these two SLB models and they cannot predict the spectral content. The latter requires consideration of finite translational relaxation rate. Unfortunately, it is rather difficult to solve simultaneously the Navier-Stokes (NS) equations and the conservation equations of the number of lasing particles per unit volume and per unit frequency interval. In the operating condition of flowing COIL, it is possible to obtain a perturbational solution of the conservational equations for lasing particles and deduce a new relation between the gain and the optical intensity, i.e., a new gain-saturation relation. By coupling the gain-saturation relation with other governing equations (such as the NS equations, chemical reaction equations and the optical model of gain-equal-loss), We have numerically calculated the performances of flowing COIL. The present results are compared with those obtained by the common rate-equation (RE) model, in which the Voigt profile function and its low pressure limit expression are used. The difference of different model's results is great. For instance, in the case of lasing frequency coinciding with the central frequency of line profile and very low gas pressure, the gain-saturation relation of the present model is quite different with that of the RE model.
Resumo:
在气固两相流的单向耦合模型框架下,研究大气悬浮沙尘在阵风作用下的运动轨迹及其随大气风速、沙尘粒径的变化,揭示了在Stokes阻力、Saffman力和重力共同作用下,沙尘悬移可能转换为跃移的现象。
Resumo:
Various vortex generators which include ramp, split-ramp and a new hybrid concept "ramped-vane" are investigated under normal shock conditions with a diffuser at Mach number of 1.3. The dimensions of the computational domain were designed using Reynolds Average Navier-Stokes studies to be representative of the flow in an external-compression supersonic inlet. Using this flow geometry, various vortex generator concepts were studied with Implicit Large Eddy Simulation. In general, the ramped-vane provided increased vorticity compared to the other devices and reduced the separation length downstream of the device centerline. In addition, the size, edge gap and streamwise position respect to the shock were studied for the ramped-vane and it was found that a height of about half the boundary thickness and a large trailing edge gap yielded a fully attached flow downstream of the device. This ramped-vane also provided the largest reduction in the turbulent kinetic energy and pressure fluctuations. Additional benefits include negligible drag while the reductions in boundary layer displacement thickness and shape factor were seen compared to other devices. © 2010 by Sang Lee.
Resumo:
To describe the various complex mechanisms of the dissipative dynamical system between waves, currents, and bottoms in the nearshore region that induce typically the wave motion on large-scale variation of ambient currents, a generalized wave action equation for the dissipative dynamical system in the nearshore region is developed by using the mean-flow equations based on the Navier-Stokes equations of viscous fluid, thus raising two new concepts: the vertical velocity wave action and the dissipative wave action, extending the classical concept, wave action, from the ideal averaged flow conservative system into the real averaged flow dissipative system (that is, the generalized conservative system). It will have more applications.
Resumo:
Rarefied gas flows through micro-channels are simulated using particle approaches, named as the information preservation (IP) method and the direct simulation Monte Carlo (DSMC) method. In simulating the low speed flows in long micro-channels the DSMC method encounters the problem of large sample size demand and the difficulty of regulating boundary conditions at the inlet and outlet. Some important computational issues in the calculation of long micro-channel flows by using the IP method, such as the use the conservative form of the mass conservation equation to guarantee the adjustment of the inlet and outlet boundary conditions and the super-relaxation scheme to accelerate the convergence process, are addressed. Stream-wise pressure distributions and mass fluxes through micro-channels given by the IP method agree well with experimental data measured in long micro-channels by Pong et al. (with a height to length ratio of 1.2:3000), Shih et al. (l.2:4800), Arkilic et al. and Arkilic (l.3:7500), respectively. The famous Knudsen minimum of normalized mass flux is observed in IP and DSMC calculations of a short micro-channel over the entire flow regime from continuum to free molecular, whereas the slip Navier-Stokes solution fails to predict it.
Resumo:
Various vortex generators which include ramp, split-ramp and a new hybrid concept "ramped-vane" are investigated under normal shock conditions with a diffuser at Mach number of 1.3. The dimensions of the computational domain were designed using Reynolds Average Navier-Stokes studies to be representative of the flow in an external-compression supersonic inlet. Using this flow geometry, various vortex generator concepts were studied with Implicit Large Eddy Simulation. In general, the ramped-vane provided increased vorticity compared to the other devices and reduced the separation length downstream of the device centerline. In addition, the size, edge gap and streamwise position respect to the shock were studied for the ramped-vane and it was found that a height of about half the boundary thickness and a large trailing edge gap yielded a fully attached flow downstream of the device. This ramped-vane also provided the largest reduction in the turbulent kinetic energy and pressure fluctuations. Additional benefits include negligible drag while the reductions in boundary layer displacement thickness and shape factor were seen compared to other devices. © 2011 Elsevier Ltd.
Resumo:
A hybrid method of continuum and particle dynamics is developed for micro- and nano-fluidics, where fluids are described by a molecular dynamics (MD) in one domain and by the Navier-Stokes (NS) equations in another domain. In order to ensure the continuity of momentum flux, the continuum and molecular dynamics in the overlap domain are coupled through a constrained particle dynamics. The constrained particle dynamics is constructed with a virtual damping force and a virtual added mass force. The sudden-start Couette flows with either non-slip or slip boundary condition are used to test the hybrid method. It is shown that the results obtained are quantitatively in agreement with the analytical solutions under the non-slip boundary conditions and the full MD simulations under the slip boundary conditions.
Resumo:
Direct numerical simulation (DNS) of supercritical CO2 turbulent channel flow has been performed to investigate the heat transfer mechanism of supercritical fluid. In the present DNS, full compressible Navier-Stokes equations and Peng-Robison state equation are solved. Due to effects of the mean density variation in the wall normal direction, mean velocity in the cooling region becomes high compared with that in the heating region. The mean width between high-and low-speed streaks near the wall decreases in the cooling region, which means that turbulence in the cooling region is enhanced and lots of fine scale eddies are created due to the local high Reynolds number effects. From the turbulent kinetic energy budget, it is found that compressibility effects related with pressure fluctuation and dilatation of velocity fluctuation can be ignored even for supercritical condition. However, the effect of density fluctuation on turbulent kinetic energy cannot be ignored. In the cooling region, low kinematic viscosity and high thermal conductivity in the low speed streaks modify fine scale structure and turbulent transport of temperature, which results in high Nusselt number in the cooling condition of the supercritical CO2.
Resumo:
Adhesion forces of Dipalmitoylphosphatidylcholine ( DPPC) membrane in the gel phase are investigated by molecular dynamics ( MD) simulation. In the simulations, individual DPPC molecules are pulled out of DPPC membranes with different rates and we get the maximum adhesion forces of DPPC membrane. We find that the maximum adhesion forces increase with pull rate, from about 400 to 700 pN when pull rates are from 0.001 to 0.03 nm/ps. We analyze the relationship between pull rate and adhesion forces of different origins using Brownian dynamics and notice that viscosity of solvent plays an important role in adhesion forces. Then we simulate the motion of a single DPPC molecule in solvent and it elucidates that the maximum drag force is almost linear with respect to the pull rate. We use Stokes' relation to describe the motion of a single DPPC molecule and deduce the effective length of a DPPC molecule. Conformational analyses indicate that the free energy variation of a DPPC molecule inside and outside of the DPPC membrane is an essential part of adhesion energy.
Resumo:
In this article the UDF script file in the Fluent software was rewritten as the "connecting file" for the Fluent and the ANSYS/ABAQUS in order that the joined file can be used to do aero-elastic computations. In this way the fluid field is computed by solving the Navier-Stokes equations and the structure movement is integrated by the dynamics directly. An analysis of the computed results shows that this coupled method designed for simulating aero-elastic systems is workable and can be used for the other fluid-structure interaction problems.
Resumo:
Direct numerical simulation of transition How over a blunt cone with a freestream Mach number of 6, Reynolds number of 10,000 based on the nose radius, and a 1-deg angle of attack is performed by using a seventh-order weighted essentially nonoscillatory scheme for the convection terms of the Navier-Stokes equations, together with an eighth-order central finite difference scheme for the viscous terms. The wall blow-and-suction perturbations, including random perturbation and multifrequency perturbation, are used to trigger the transition. The maximum amplitude of the wall-normal velocity disturbance is set to 1% of the freestream velocity. The obtained transition locations on the cone surface agree well with each other far both cases. Transition onset is located at about 500 times the nose radius in the leeward section and 750 times the nose radius in the windward section. The frequency spectrum of velocity and pressure fluctuations at different streamwise locations are analyzed and compared with the linear stability theory. The second-mode disturbance wave is deemed to be the dominating disturbance because the growth rate of the second mode is much higher than the first mode. The reason why transition in the leeward section occurs earlier than that in the windward section is analyzed. It is not because of higher local growth rate of disturbance waves in the leeward section, but because the growth start location of the dominating second-mode wave in the leeward section is much earlier than that in the windward section.
Resumo:
In this paper, we present a numerical study on the thermocapillary migration of drops. The Navier-Stokes equations coupled with the energy conservation equation are solved by the finite-difference front-tracking scheme. The axisymmetric model is adopted in Our simulations, and the drops are assumed to be perfectly spherical and nondeformable. The benchmark simulation starts from the classical initial condition with a uniform temperature gradient. The detailed discussions and physical explanations of migration phenomena are presented for the different values of (1) the Marangoni numbers and Reynolds numbers of continuous phases and drops and (2) the ratios of drop densities and specific heats to those of continuous phases. It is found that fairly large Marangoni numbers may lead to fluctuations in drop velocities at the beginning part of simulations. Finally, we also discuss the influence of initial conditions on the thermocapillary migrations. (C) 2008 American Institute of Physics.
Resumo:
In this paper, an unstructured Chimera mesh method is used to compute incompressible flow around a rotating body. To implement the pressure correction algorithm on unstructured overlapping sub-grids, a novel interpolation scheme for pressure correction is proposed. This indirect interpolation scheme can ensure a tight coupling of pressure between sub-domains. A moving-mesh finite volume approach is used to treat the rotating sub-domain and the governing equations are formulated in an inertial reference frame. Since the mesh that surrounds the rotating body undergoes only solid body rotation and the background mesh remains stationary, no mesh deformation is encountered in the computation. As a benefit from the utilization of an inertial frame, tensorial transformation for velocity is not needed. Three numerical simulations are successfully performed. They include flow over a fixed circular cylinder, flow over a rotating circular cylinder and flow over a rotating elliptic cylinder. These numerical examples demonstrate the capability of the current scheme in handling moving boundaries. The numerical results are in good agreement with experimental and computational data in literature. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing programme developed for simulating this model integrates the two-dimensional, time-dependent Navier-Stokes equations and energy equation by a second-order accurate projection method. We focus on the coupling of evaporation and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found and explained from our numerical results.
Resumo:
The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Karman vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.