917 resultados para Statistical Robustness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and predicted behavior of the bridge caused under a subset of ambient trucks. The predicted behavior is derived from a statistics-based model trained with field data from the undamaged bridge (not a finite element model). The differences between actual and predicted responses, called residuals, are then used to construct control charts, which compare undamaged and damaged structure data. Validation of the damage-detection approach was achieved by using sacrificial specimens that were mounted to the bridge and exposed to ambient traffic loads and which simulated actual damage-sensitive locations. Different damage types and levels were introduced to the sacrificial specimens to study the sensitivity and applicability. The damage-detection algorithm was able to identify damage, but it also had a high false-positive rate. An evaluation of the sub-components of the damage-detection methodology and methods was completed for the purpose of improving the approach. Several of the underlying assumptions within the algorithm were being violated, which was the source of the false-positives. Furthermore, the lack of an automatic evaluation process was thought to potentially be an impediment to widespread use. Recommendations for the improvement of the methodology were developed and preliminarily evaluated. These recommendations are believed to improve the efficacy of the damage-detection approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction:  With the setting up of the newly Athlete's Biological Passport antidoping programme, novel guidelines have been introduced to guarantee results beyond reproach. We investigated in this context, the effect of storage time on the variables commonly measured for the haematological passport. We also wanted to assess for these variables, the within and between analyzer variations. Methods:  Blood samples were obtained from top level male professional cyclists (27 samples for the first part of the study and 102 for the second part) taking part to major stage races. After collection, they were transported under refrigerated conditions (2 °C < T < 12 °C), delivered to the antidoping laboratory, analysed and then stored at approximately 4 °C to conduct analysis at different time points up to 72 h after delivery. A mixed-model procedure was used to determine the stability of the different variables. Results:  As expected haemoglobin concentration was not affected by storage and showed stability for at least 72 h. Under the conditions of our investigation, the reticulocytes percentage showed a much better stability than previous published data (> 48 h) and the technical comparison of the haematology analyzer demonstrated excellent results. Conclusion:  In conclusion, our data clearly demonstrate that as long as the World Anti-Doping Agency's guidelines are followed rigorously, all blood results reach the quality level required in the antidoping context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of this article is to assess the effect of the adaptive statistical iterative reconstruction (ASIR) technique on image quality in hip MDCT arthrography and to evaluate its potential for reducing radiation dose. SUBJECTS AND METHODS: Thirty-seven patients examined with hip MDCT arthrography were prospectively randomized into three different protocols: one with a regular dose (volume CT dose index [CTDIvol], 38.4 mGy) and two with a reduced dose (CTDIvol, 24.6 or 15.4 mGy). Images were reconstructed using filtered back projection (FBP) and four increasing percentages of ASIR (30%, 50%, 70%, and 90%). Image noise and contrast-to-noise ratio (CNR) were measured. Two musculoskeletal radiologists independently evaluated several anatomic structures and image quality parameters using a 4-point scale. They also jointly assessed acetabular labrum tears and articular cartilage lesions. RESULTS: With decreasing radiation dose level, image noise statistically significantly increased (p=0.0009) and CNR statistically significantly decreased (p=0.001). We also found a statistically significant reduction in noise (p=0.0001) and increase in CNR (p≤0.003) with increasing percentage of ASIR; in addition, we noted statistically significant increases in image quality scores for the labrum and cartilage, subchondral bone, overall diagnostic quality (up to 50% ASIR), and subjective noise (p≤0.04), and statistically significant reductions for the trabecular bone and muscles (p≤0.03). Regardless of the radiation dose level, there were no statistically significant differences in the detection and characterization of labral tears (n=24; p=1) and cartilage lesions (n=40; p≥0.89) depending on the ASIR percentage. CONCLUSION: The use of up to 50% ASIR in hip MDCT arthrography helps to reduce radiation dose by approximately 35-60%, while maintaining diagnostic image quality comparable to that of a regular-dose protocol using FBP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Juvenile Court Services Offices are issuing their fourth annual statewide report. The the Iowa Division of Criminal and Juvenile Justice Planning (CJJP). This report would not be possible without the dedication of, and assistance from, all of the above-mentioned people. The eight Chief Juvenile Court Officers would like to take this opportunity to thank their staff for their dedication and their ability to enter accurate information on every youth referred to Juvenile Court Services; the staff at the Iowa Court Information System, without whom this report would not be possible; and CJJP for their maintenance of the Iowa Justice Data Warehouse and their support in preparing this document.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Juvenile Court Services Offices are issuing their fourth annual statewide report. The the Iowa Division of Criminal and Juvenile Justice Planning (CJJP). This report would not be possible without the dedication of, and assistance from, all of the above-mentioned people. The eight Chief Juvenile Court Officers would like to take this opportunity to thank their staff for their dedication and their ability to enter accurate information on every youth referred to Juvenile Court Services; the staff at the Iowa Court Information System, without whom this report would not be possible; and CJJP for their maintenance of the Iowa Justice Data Warehouse and their support in preparing this document.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we develop a new decision making model and apply it in political Surveys of economic climate collect opinions of managers about the short-term future evolution of their business. Interviews are carried out on a regular basis and responses measure optimistic, neutral or pessimistic views about the economic perspectives. We propose a method to evaluate the sampling error of the average opinion derived from a particular type of survey data. Our variance estimate is useful to interpret historical trends and to decide whether changes in the index from one period to another are due to a structural change or whether ups and downs can be attributed to sampling randomness. An illustration using real data from a survey of business managers opinions is discussed.