854 resultados para State feedback design
Resumo:
Chemical methods of synthesis play a crucial role in designing and discovering new and novel materials and in providing less cumbersome methods for preparing known materials. Chemical methods also enable the synthesis of metastable materials which are otherwise difficult to prepare. In this presentation, the various innovative chemical methods of synthesising oxide materials will be briefly reviewed with emphasis on soft-chemical routes. Electrochemical synthesis, ion-exchange method, alkali-flux method and some of the interaction reactions will be highlighted, besides topochemical aspects of solid state synthesis. Cuprate superconductors as well as intergrowth structures will also be examined.
Resumo:
In this paper, we consider robust joint linear precoder/receive filter design for multiuser multi-input multi-output (MIMO) downlink that minimizes the sum mean square error (SMSE) in the presence of imperfect channel state information (CSI). The base station is equipped with multiple transmit antennas, and each user terminal is equipped with multiple receive antennas. The CSI is assumed to be perturbed by estimation error. The proposed transceiver design is based on jointly minimizing a modified function of the MSE, taking into account the statistics of the estimation error under a total transmit power constraint. An alternating optimization algorithm, wherein the optimization is performed with respect to the transmit precoder and the receive filter in an alternating fashion, is proposed. The robustness of the proposed algorithm to imperfections in CSI is illustrated through simulations.
Resumo:
Frequency-domain scheduling and rate adaptation have helped next generation orthogonal frequency division multiple access (OFDMA) based wireless cellular systems such as Long Term Evolution (LTE) achieve significantly higher spectral efficiencies. To overcome the severe uplink feedback bandwidth constraints, LTE uses several techniques to reduce the feedback required by a frequency-domain scheduler about the channel state information of all subcarriers of all users. In this paper, we analyze the throughput achieved by the User Selected Subband feedback scheme of LTE. In it, a user feeds back only the indices of the best M subbands and a single 4-bit estimate of the average rate achievable over all selected M subbands. In addition, we compare the performance with the subband-level feedback scheme of LTE, and highlight the role of the scheduler by comparing the performances of the unfair greedy scheduler and the proportional fair (PF) scheduler. Our analysis sheds several insights into the working of the feedback reduction techniques used in LTE.
Resumo:
Design and operational details for a self-supported polymer electrolyte fuel cell (PEFC) system with anodic dead-end fuel supply and internally humidified cathodic oxidant flow are described. During the PEFC operation, nitrogen and water back diffuse across the Nafion membrane from the cathode to the anode and accumulate in the anode flow channels affecting stack performance. The accumulated inert species are flushed from the stack by purging the fuel cell stack with a timer-activated purge valve to address the aforesaid problem. To minimize the system complexity, stack is designed in such a way that all the inert species accumulate in only one cell called the purge cell. A pulsed purge sequence comprises opening the valve for purge duration followed by purge-valve closing for the hold period and repeating the sequence in cycles. Since self-humidification is inadequate to keep the membrane wet, the anodic dead-end-operated PEFC stack with composite membrane comprising perflourosulphonic acid (Nafion) and silica is employed for keeping the membrane humidified even while operating the stack with dry hydrogen and internally humidified air.
Resumo:
A family of bile acid-based molecular tweezers (7-9) has been constructed readily from simple precursors. Binding experiments with various electron deficient aromatic compounds showed that tweezer 8 binds trinitrofluorenone 10e with an association constant of 220 M(-1) in CDCl3. Single-crystal X-ray analysis of compound 8 shows aromatic-aromatic interactions producing a two-dimensional lattice of pyrene units. Tweezer 8 was immobilized on Merrifield resin, and binding studies have shown that these data compare well with those of the solution state studies.
Resumo:
Phase relations in the system Ca-Pb-O at 1100 K have been determined by equilibrating 18 compositions in the ternary and identifying the phases present in quenched samples by X-ray diffraction and energy dispersive X-ray analysis (EDX). Only one ternary compound Ca2PbO4 was found to be present. The compound coexists with CaO and PbO. The intermetallic compounds Ca2Pb, Ca5Pb3 and CaPb and liquid alloys are in equilibrium with CaO. The standard Gibbs energies of formation of Ca2PbO4 (880 - 1100 K) and Pb3O4 (770 - 910 K) were determined using solid-state cells based on yttria-stabilized zirconia as the solid electrolyte. Pure oxygen gas at 0.1 MPa was used as the reference electrode. For measurements on Ca2PbO4, a novel cell design with three electrodes in series, separated by solid electrolyte membranes, was used to avoid polarization of the electrode containing three solid phases. Two three-phase electrodes were used. The first absorbs the electrochemical flux of oxygen from the reference electrode to the measuring electrode. The other three-phase electrode, which is unaffected by the oxygen flux through the solid electrolyte, is used for electromotive force (EMF) measurement. The results from EMF studies were cross-checked using thermogravimetry (TG) under controlled oxygen partial pressures. The stability of Pb3O4 was investigated using a conventional solid-state cell with RuO2 electrodes. The results can be summarized by the following equations: 2CaO + PbO +1/2O(2) --> Ca2PbO4 Delta(r)G degrees/J mol(-1) = (- 128340 + 93.21 T/K) +/- 200 3PbO + 1/2O(2) --> Pb3O4 Delta(r)G degrees/J mol(-1) = (- 70060 + 77.5 T/K) +/- 150
Resumo:
There have been major advances in solid state and materials chemistry in the last two decades and the subject is growing rapidly. In this account, a few of the important aspects of materials chemistry of interest to the author are presented. Accordingly, transition metal oxides, which constitute the most fascinating class of inorganic materials, receive greater attention, Metal-insulator transitions in oxides, high temperature superconductivity in cuprates and colossal magnetoresistance in manganates are discussed at some length and the outstanding problems indicated, We then discuss certain other important classes of materials which include molecular materials, biomolecular materials and porous solids. Recent developments in synthetic strategies for inorganic materials are reviewed. Some results on metal nanoparticles and nanotubes are briefly presented. The overview, which is essentially intended to provide a flavour of the subject and show how it works, lists references to many crucial reviews in the recent literature.
Resumo:
In the absence of a reliable method for a priori prediction of structure and properties of inorganic solid materials, an experimental approach involving a systematic study of composition, structure and properties combined with chemical intuition based on previous experience is likely to be a viable alternative to the problem of rational design of inorganic materials. The approach is illustrated by taking perovskite lithium-ion conductors as an example.
Resumo:
In this paper, we consider a robust design of MIMO-relay precoder and receive filter for the destination nodes in a non-regenerative multiple-input multiple-output (MIMO) relay network. The network consists of multiple source-destination node pairs assisted by a single MIMO-relay node. The source and destination nodes are single antenna nodes, whereas the MIMO-relay node has multiple transmit and multiple receive antennas. The channel state information (CSI) available at the MIMO-relay node for precoding purpose is assumed to be imperfect. We assume that the norms of errors in CSI are upper-bounded, and the MIMO-relay node knows these bounds. We consider the robust design of the MIMO-relay precoder and receive filter based on the minimization of the total MIMO-relay transmit power with constraints on the mean square error (MSE) at the destination nodes. We show that this design problem can be solved by solving an alternating sequence of minimization and worst-case analysis problems. The minimization problem is formulated as a convex optimization problem that can be solved efficiently using interior-point methods. The worst-case analysis problem can be solved analytically using an approximation for the MSEs at the destination nodes. We demonstrate the robust performance of the proposed design through simulations.
Resumo:
9-Anthryl and 1-pyrenyl terpyridines (1 and 2, respectively), key precursors for the design of novel fluorescent sensors have been synthesized and characterized by H-1 NMR, mass spectroscopy and X-ray crystallography. Twisted molecular conformations for each 1 and 2 were observed in their single crystal structures. Energy minimization calculations for the 1 and 2 using the semi-empirical AM1 method show that the 'twisted' conformation is intrinsic to these systems. We observe interconnected networks of edge-to-face CH...pi interactions, which appear to be cooperative in nature, in each of the crystal structures. The two twisted molecules, although having differently shaped polyaromatic hydrocarbon substituents, show similar patterns of edge-to-face CH...pi interactions.The presently described systems comprise of two aromatic surfaces that are almost orthogonal to each other. This twisted or orthogonal nature of the molecules leads to the formation of interesting multi-directional ladder like supramolecular organizations. A combination of edge-to-face and face-to-face packing modes helps to stabilize these motifs. The ladder like architecture in 1 is helical in nature. (C) 2002 Published by Elsevier Science B.V.
Resumo:
Several variants of hydrated sodium cadmium bisulfate, Na(2)Cd(2)(SO(4))(3) center dot 3H(2)O, Na(2)Cd(SO(4))(2) center dot 2H(2)O, and Na(2)Cd(SO(4))(2) center dot 4H(2)O have been synthesized, and their thermal properties followed by phase transitions have been invesigated. The formation of these phases depends on the stochiometry and the time taken for crystallization from water. Na(2)Cd(2)(SO(4))(3)center dot 3H(2)O, which crystallizes in the trigonal system, space group P3c, is grown from the aqueous solution in about four weeks. The krohnkite type mineral Na(2)Cd(SO(4))(2) center dot 2H(2)O and the mineral astrakhanite, also known as blodite, Na(2)Cd (SO(4))(2)center dot 4H(2)O, crystallize concomittantly in about 24 weeks. Both these minerals belong to the monoclinic system(space group P2(1)/c). Na(2)Cd(2)(SO(4))(3)center dot 3H(2)O loses water completely when heated to 250 degrees C and transforms to a dehydrated phase (cubic system, space group I (4) over bar 3d) whose structure has been established using ab initio powder diffration techniques. Na(2)Cd(SO(4))(2)center dot 2H(2)O transforms to alpha-Na(2)Cd(SO(4))(2) (space group C2/c) on heating to 150 degrees C which is a known high ionic conductor and remains intact over prolonged periods of exposure to moisture (over six months). However, when alpha-Na(2)Cd(SO(4))(2) is heated to 570 degrees C followed by sudden quenching in liquid nitrogen beta-Na(2)Cd(SO(4))(2) (P2(1)/c) is formed. beta-Na(2)Cd(SO(4))(2) takes up water from the atmosphere and gets converted completely to the krohnkite type mineral in about four weeks. Further, beta-Na(2)Cd(SO(4))(2) has a conductivity behavior comparable to the a-form up to 280 degrees C, the temperature required for the transformation of the beta- to alpha-form. These experiments demonstrate the possibility of utilizing the abundantly available mineral sources as precursors to design materials with special properties.
Resumo:
Automated synthesis of mechanical designs is an important step towards the development of an intelligent CAD system. Research into methods for supporting conceptual design using automated synthesis has attracted much attention in the past decades. The research work presented here is based on the processes of synthesizing multiple state mechanical devices carried out individually by ten engineering designers. The designers are asked to think aloud, while carrying out the synthesis. The ten design synthesis processes are video recorded, and the records are transcribed and coded for identifying activities occurring in the synthesis processes, as well as for identifying the inputs to and outputs from the activities. A mathematical representation for specifying multi-state design task is proposed. Further, a descriptive model capturing all the ten synthesis processes is developed and presented in this paper. This will be used to identify the outstanding issues to be resolved before a system for supporting design synthesis of multiple state mechanical devices that is capable of creating a comprehensive variety of solution alternatives could be developed.
Resumo:
The soft switching converters evolved through the resonant load, resonant switch, resonant transition and active clamp converters to eliminate switching losses in power converters. This paper briefly presents the operating principle of the new family of soft transition converters; the methodology of design of these converters is presented through an example. In the proposed family of converters, the switching transitions of both the main switch and auxiliary switch are lossless.When these converters are analysed in terms of the pole current and throw voltage, the defining equations of all converters belonging to this family become identical.Such a description allows one to define simple circuit oriented model for these converters. These circuit models help in evaluating the steady state and dynamic model of these converters. The standard dynamic performance functions of the converters are readily obtainable from this model. This paper presents these dynamic models and verifies the same through measurements on a prototype converter.