980 resultados para Sr (x) Ba (1-x) SnO3 e BaSnO3


Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用溶胶-凝胶法合成(Ce0.9Nd0.1)1-xMoxO2-δ(x=0.00、0.02、0.05、0.10)氧化物,通过X射线衍射(XRD)、场发射扫描电镜(FESEM)等手段对氧化物进行结构表征,交流阻抗谱测试电性能.结果表明:所有样品均为单一萤石立方结构;少量MoO3的加入提高了材料的致密性,降低了材料的总电阻、晶界电阻和晶界电阻在总电阻中所占比例,提高了材料的电导率.1200℃烧结样品24h,测试温度700℃时,(Ce0.9Nd0.1)1-xMoxO2-δ(x=0.00)总电导率和晶界电导率分别为0.05和0.19S·m-1,掺Mo材料(Ce0.9Nd0.1)1-xMoxO2-δ(x=0.02)的总电导率和晶界电导率分别为2.42和3.96S·m-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mg-4Al-0.4Mn-xPr (x = 1, 2, 4 and 6 wt.%) magnesium alloys were prepared successfully by the high-pressure die-casting technique. The microstructures, mechanical properties, corrosion behavior as well as strengthening mechanism were investigated. The die-cast alloys were mainly composed of small equiaxed dendrites and the matrix. The fine rigid skin region was related to the high cooling rate and the aggregation of alloying elements, such as Pr. With the Pr content increasing, the alpha-Mg grain sizes were reduced gradually and the amounts of the Al2Pr phase and All, Pr-3 phase which mainly concentrated along the grain boundaries were increased and the relative volume ratio of above two phases was changed. Considering the performance-price ratio, the Pr content added around 4 wt.% was suitable to obtain the optimal mechanical properties which can keep well until 200 degrees C as well as good corrosion resistance. The outstanding mechanical properties were mainly attributed to the rigid casting surface layer, grain refinement, grain boundary strengthening obtained by an amount of precipitates as well as solid solution strengthening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce6-xDyxMoO15-delta (0.0 <= x <= 1.8) were synthesized by modified sol-gel method. Structural and electrical properties were investigated by means of X-ray diffraction (XRD), Raman, X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). The XRD patterns showed that the materials were single phase with a cubic fluorite structure. Impedance spectroscopy measurement in the temperature range between 350 degrees C and 800 degrees C indicated a sharp increase in conductivity for the system containing small amount of Dy2O3. The Ce5.6Dy0.4MoO15-delta detected to be the best conducting phase with the highest conductivity (sigma(t) = 8.93 x 10(-3) S cm(-1)) is higher than that of Ce5.6Sm0.4MoO15-delta (sigma(t) = 2.93 x 10(-3) S cm(-1)) at 800 degrees C, and the corresponding activation energy of Ce5.6Dy0.4MoO15-delta (0.994 eV) is lower than that of Ce5.6Sm0.4MoO15-delta (1.002 eV).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of oxide ion conductors Ce6-xGdxMoO15-delta (0.0 <= x <= 1.8) have been prepared by the sol-gel method. Their properties were characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), Raman, IR, X-ray photoelectron spectroscopy (XPS), and AC impedance spectroscopy. The XRD patterns showed that the materials were single phase with a cubic fluorite structure. The conductivity of Ce6-xGdxMoO15-delta increases as x increases and reaches the maximum at x = 0.15. The conductivity of Ce4.5Gd1.5MoO15-delta is sigma(t) = 3.6 x 10(-3) S/cm at 700 degrees C, which is higher than that of Ce4.5/6Gd1.5/6O2-delta (sigma(t) = 2.6 x 10(-3) S/cm), and the corresponding activation energy of Ce4.5Gd1.5MoO15-delta (0.92 eV) is lower than that of Ce4.5/6Gd1.5/6O2-delta (1.18 eV).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce6-xHoxMoO15-delta(0.0 <= x <= 1.2) was synthesized by modified sol-gel method and characterized by differential X-ray diffraction(XRD), Raman, and X-ray photoelectron spectroscopy(XPS) methods. The oxide ionic conductivity of the samples was investigated by AC impedance spectroscopy. It shows that all the samples are single phase with a cubic fluorite structure. The solid solution Ce6-xHoxMoO15-delta(x=0.6) was detected to be the best conducting phase with the highest conductivity(sigma(t)=1.05x10(-2) S/cm) at 800 degrees C and the lowest activation energy(E-a=1.09 eV). These properties suggest that this kind of material has a potential application in intermediate-low temperature solid oxide fuel cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mg-8Gd-0.6Zr-xNd (x = 0, 1, 2 and 3 mass%) alloys were prepared by metal mould casting method, and the microstructures, age hardening responses and mechanical properties have been investigated. The microhardness of the as-cast alloys is increased with increasing Nd content. The age hardening behavior and mechanical properties are enhanced significantly by adding Nd element. The peak ageing hardness of the Mg-8Gd-0.6Zr-3Nd alloy is 103, it is about 1.3 times more than that of the Mg-8Gd-0.6Zr alloy. The aged Mg-8Gd-0.6Zr-3Nd alloy exhibits maximum ultimate tensile strength and yield strength, and the values are 271 and 205 MPa at room temperature, 205 MPa and 150 MPa at 250 degrees C, respectively. Which are about 2 times higher than those of Mg-8Gd-0.6Zr alloy. The improved hardness and strength are mainly attributed to the fine dispersiveness Of Mg5RE and Mg12RE precipitates in the alloy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

M2B5O9X: Re(M = Ca, Sr, Ba; X = Cl, Br; Re = Eu, Th) phosphors were synthesized via solid state method. The products were characterized with X-ray powder diffraction and luminescence spectrometer. The luminescent properties as well. as the influences of the matrix composition and other doping ions on the luminescence of the rare earth ions of the co-doped phosphors were investigated. The coexistence of Eu3+, Eu2+ and Th3+ were observed in these matrices. The phenomenon may be explained by the electron transfer theory. The sensitization of Ce3+ ion improves the intensity of emission of Eu2+, and Tb3+. The competition between electron transfer among conjugate rare earth ions and energy migration might be the reasons for the observation. We predict a novel trichromatic phosphor co-doped with Eu3+ Tb3+ in M2B5O9X.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure and electrochemical properties of TiV1.1Mn0.9Nix (x = 0.1-0.7) solid solution electrode alloys have been investigated. It is found that these alloys mainly consist of a solid solution phase with body centered cubic (bcc) structure and a C14 Laves secondary phase. The solid solution alloys show easy activation behavior, high temperature dischargeability, high discharge capacity and favorable high-rate dischargeability as a negative electrode material in Ni-MH battery. The maximum discharge capacity is 502 mAh g(-1) at 303 K when x = 0.4. Electrochemical impedance spectroscopy (EIS) test shows that the charge-transfer resistance at the surface of the alloy electrodes decreases obviously with increasing Ni content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Ce6-xYxMoO15-delta solid solution with fluorite-related structure have been characterized by differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), IR, Raman, scanning electric microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. The electric conductivity of samples is investigated by Ac impedance spectroscopy. An essentially pure oxide-ion conductivity of the oxygen-deficiency was observed in pure argon, oxygen and air. The highest oxygen-ion conductivity was found in Ce5.5Y0.5MoO15-delta ranging from 5.9 X 10(-5)(S cm(-1)) at 300 degrees C to 1.3 X 10(-2)(S cm(-1)) at 650 degrees C, respectively. The oxide-ion conductivities remained stable over 80 h-long test at 800 degrees C. These properties suggested that significant oxide-ionic conductivity exists in these materials at moderately elevated temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Y2(1-x) Gd2xSiWO8 : A ( 0 <= x <= 1; A= Eu3+, Dy3+, Sm3+, Er3+) phosphor films have been prepared on silica glass substrates through the sol - gel dip-coating process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscope (AFM), scanning electron microscopy (SEM) and photoluminescence spectra as well as lifetimes were used to characterize the resulting films. The results of the XRD indicated that the films began to crystallize at 800 degrees C and crystallized completely at 1000 degrees C. The AFM and SEM study revealed that the phosphor films, which mainly consisted of closely packed grains with an average size of 90 - 120 nm with a thickness of 660 nm, were uniform and crack free. Owing to an efficient energy transfer from the WO42- groups to the activators, the doped lanthanide ion ( A) showed its characteristic f - f transition emissions in crystalline Y2(1-x) Gd2xSiWO8 (0 <= x <= 1) films. The optimum concentrations for Eu3+, Dy3+, Sm3+, Er3+ were determined to be 21, 5, 3 and 7 mol% of Y3+ in Y2SiWO8 films, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)(2)Ni-9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCU5-type structure. The abundance of the La(La, Mg)(2)Ni-9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g(-1) (x = 0.1) to 68.3 mAh g(-1) (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g(-1), the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce and MgO were added simultaneously to La-Sr-Ni-O catalyst and a substantial enhancement of activity for NO decomposition was observed, which may be attributed to the formation of a new highly active site caused by the addition of Ce and MgO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents results concerning structure and electrochemical characteristics of the La0.67Mg0.33 (Ni0.8Co0.1Mn0.1) (x) (x=2.5-5.0) alloy. It can be found from the result of the Rietveld analyses that the structures of the alloys change obviously with increasing x from 2.5 to 5.0. The main phase of the alloys with x=2.5-3.5 is LaMg2Ni9 phase with a PuNi3-type rhombohedral structure, but the main phase of the alloys with x=4.0-5.0 is LaNi(5)phase with a CaCu5-type hexagonal structure. Furthermore, the phase ratio, lattice parameter and cell volume of the LaMg2Ni9 phase and the LaNi5 phase change with increasing x. The electrochemical studies show that the maximum discharge capacity increases from 214.7 mAh/g (x=2.5) to 391.1 mAh/g (x=3.5) and then decreases to 238.5 mAh/g (x=5.0). As the discharge current density is 1,200 mA/g, the high rate dischargeability (HRD) increases from 51.1% (x=2.5) to 83.7% (x=3.5) and then decreases to 71.6% (x=5.0). Moreover, the exchange current density (I-0) of the alloy electrodes first increases and then decrease with increasing x from 2.5 to 5.0, which is consistent with the variation of the HRD. The cell volume reduces with increasing x in the alloys, which is detrimental to hydrogen diffusion and accordingly decreases the low-temperature dischargeability of the alloy electrodes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin film phosphors with compositions of RP1-xVxO4: A (R = Y, Gd, La; A = Sm3+, Et3+; x = 0, 0.5, 1) have been prepared by a Pechini sol-gel process. X-Ray diffraction, atomic force microscopy (AFM), photoluminescence excitation and emission spectra were utilized to characterize the thin film phosphors. The results of XRD showed that a solid solution formed in YVxP1-xO4: A film series from x = 0 to x = 1 with zircon structure, which also held for GdVO4: A film. However, LaVO4: A film crystallized with a different structure, monazite. AFM study revealed that the phosphor films consisted of homogeneous particles ranging from 90 to 400 nm depending on the compositions. Upon short ultraviolet excitation, the films exhibit the characteristic Sm(3+ 4)G(5/2)-H-6(J) (J=5/2, 7/2, 9/2) emission in the red region and Er3+ H-2(11/2), S-4(3/2)-I-4(15/2) emission in the green region, respectively With the increase of x values in YVxP1-xO4: SM3+ (Er3+) films, the emission intensity Of SM3+ (Er3+) increases due to the increase of energy transfer probability from VO43- to Sm3+ (Er3+). Due to the structural effects, the Sm3+ (Er3+) shows similar spectral properties in YVO4 and GdVO4 films, which are much different from those in LaVO4 film.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MH-Ni电池具有电化学比能量高、耐过充/放电性能好、无记忆效应和环境友好等优点而得到广泛应用.金属氢化物电极是MH-Ni电池的核心材料,其研究工作主要集中在稀土AB_5系、钛系、锆系和镁基等合金作为MH-Ni电池金属氢化物电极方面.但这些体系合金的电化学容量低,活化