996 resultados para Specific conductance
Resumo:
We report a novel 1D J-edited pure shift NMR experiment (J-PSHIFT) that was constructed from a pseudo 2D experiment for the direct measurement of proton-proton scalar couplings. The experiment gives homonuclear broad-band H-1-decoupled H-1 NMR spectra, which provide a single peak for chemically distinct protons, and only retain the homonuclear-scalar-coupled doublet pattern at the chemical-shift positions of the protons in the coupled network of a specific proton. This permits the direct and unambiguous measurement of the magnitudes of the couplings. The incorporation of a 1D selective correlation spectroscopy (COSY)/ total correlation spectroscopy (TOCSY) block in lieu of the initial selective pulse, results in the exclusive detection of the correlated spectrum of a specific proton.
Resumo:
OBJECTIVE To investigate the level and location of phosphodiesterase 5 (PDE5) expression in rat prostate. METHODS The ventral, dorsal, and lateral lobes of rat prostate were examined for PDE5 expression by Western blotting. Intact rat urogenital complex, including the urinary bladder and accessory reproductive glands, was examined for PDE5 expression by immunohistochemistry. Individual prostatic lobes were further examined by immunofluorescence for expression of PDE5, alpha-smooth muscle actin, and rat endothelial cell antigen. RESULTS Western blot analysis showed that PDE5 was expressed at a significantly lower level in dorsal lobe (DL) than in ventral lobe (VL) or lateral lobe (LL). Immunohistochemistry and immunofluorescence analyses showed that PDE5 was expressed in both acinar epithelium and periacinar smooth muscle. However, although similar levels of smooth muscle PDE5 expression were observed in all 3 prostatic lobes, significantly lower level of epithelial PDE5 expression was found in DL compared with VL or LL. In prostatic blood vessels, PDE5 expression was clearly visible in the endothelium but not as easily detectable in the smooth muscle. CONCLUSION PDE5 was expressed in the acinar epithelium and periacinar smooth muscle of rat prostate. However, the epithelial PDE5 expression was significantly less in DL than in VL or LL. Regardless, the acinar wall, not the blood vessel wall, is the predominant PDE5 expression site in rat prostate. (C) 2015 Elsevier Inc.
Resumo:
An open question within the Bienenstock-Cooper-Munro theory for synaptic modification concerns the specific mechanism that is responsible for regulating the sliding modification threshold (SMT). In this conductance-based modeling study on hippocampal pyramidal neurons, we quantitatively assessed the impact of seven ion channels (R- and T-type calcium, fast sodium, delayed rectifier, A-type, and small-conductance calcium-activated (SK) potassium and HCN) and two receptors (AMPAR and NMDAR) on a calcium-dependent Bienenstock-Cooper-Munro-like plasticity rule. Our analysis with R- and T-type calcium channels revealed that differences in their activation-inactivation profiles resulted in differential impacts on how they altered the SMT. Further, we found that the impact of SK channels on the SMT critically depended on the voltage dependence and kinetics of the calcium sources with which they interacted. Next, we considered interactions among all the seven channels and the two receptors through global sensitivity analysis on 11 model parameters. We constructed 20,000 models through uniform randomization of these parameters and found 360 valid models based on experimental constraints on their plasticity profiles. Analyzing these 360 models, we found that similar plasticity profiles could emerge with several nonunique parametric combinations and that parameters exhibited weak pairwise correlations. Finally, we used seven sets of virtual knock-outs on these 360 models and found that the impact of different channels on the SMT was variable and differential. These results suggest that there are several nonunique routes to regulate the SMT, and call for a systematic analysis of the variability and state dependence of the mechanisms underlying metaplasticity during behavior and pathology.
Resumo:
What are the implications for the existence of subthreshold ion channels, their localization profiles, and plasticity on local field potentials (LFPs)? Here, we assessed the role of hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels in altering hippocampal theta-frequency LFPs and the associated spike phase. We presented spatiotemporally randomized, balanced theta-modulated excitatory and inhibitory inputs to somatically aligned, morphologically realistic pyramidal neuron models spread across a cylindrical neuropil. We computed LFPs from seven electrode sites and found that the insertion of an experimentally constrained HCN-conductance gradient into these neurons introduced a location- dependent lead in the LFP phase without significantly altering its amplitude. Further, neurons fired action potentials at a specific theta phase of the LFP, and the insertion of HCN channels introduced large lags in this spike phase and a striking enhancement in neuronal spike-phase coherence. Importantly, graded changes in either HCN conductance or its half-maximal activation voltage resulted in graded changes in LFP and spike phases. Our conclusions on the impact of HCN channels on LFPs and spike phase were invariant to changes in neuropil size, to morphological heterogeneity, to excitatory or inhibitory synaptic scaling, and to shifts in the onset phase of inhibitory inputs. Finally, we selectively abolished the inductive lead in the impedance phase introduced by HCN channels without altering neuronal excitability and found that this inductive phase lead contributed significantly to changes in LFP and spike phase. Our results uncover specific roles for HCN channels and their plasticity in phase-coding schemas and in the formation and dynamic reconfiguration of neuronal cell assemblies.
Resumo:
Designing bioactive peptides containing thioamide functionality to modulate their pharmacological properties has been thwarted so far because of various synthetic challenges. The fast, efficient, and inexpensive synthesis and incorporation of a wide range of thionated amino acids into a growing peptide chain on a solid support is reported using standard Fmoc-based chemistry. The commonly employed methodology is comprehensively investigated and optimized with significant improvements regarding the quantity of reagents and reaction conditions. The utility of the protocol is further demonstrated in the synthesis of dithionated linear and monothionated cyclic peptides, which has been a daunting task.
Resumo:
We hypothesized that the AAV2 vector is targeted for destruction in the cytoplasm by the host cellular kinase/ubiquitination/proteasomal machinery and that modification of their targets on AAV2 capsid may improve its transduction efficiency. In vitro analysis with pharmacological inhibitors of cellular serine/threonine kinases (protein kinase A, protein kinase C, casein kinase II) showed an increase (20-90%) on AAV2-mediated gene expression. The three-dimensional structure of AAV2 capsid was then analyzed to predict the sites of ubiquitination and phosphorylation. Three phosphodegrons, which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, were identified. Mutation targets comprising eight serine (S) or seven threonine (T) or nine lysine (K) residues were selected in and around phosphodegrons on the basis of their solvent accessibility, overlap with the receptor binding regions, overlap with interaction interfaces of capsid proteins, and their evolutionary conservation across AAV serotypes. AAV2-EGFP vectors with the wild-type (WT) capsid or mutant capsids (15 S/T -> alanine A] or 9 K -> arginine R] single mutant or 2 double K -> R mutants) were then evaluated in vitro. The transduction efficiencies of 11 S/T -> A and 7 K -> R vectors were significantly higher (similar to 63-90%) than the AAV2-WT vectors (similar to 30-40%). Further, hepatic gene transfer of these mutant vectors in vivo resulted in higher vector copy numbers (up to 4.9-fold) and transgene expression (up to 14-fold) than observed from the AAV2-WT vector. One of the mutant vectors, S489A, generated similar to 8-fold fewer antibodies that could be cross-neutralized by AAV2-WT. This study thus demonstrates the feasibility of the use of these novel AAV2 capsid mutant vectors in hepatic gene therapy.
Resumo:
There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising ``multiantigen'' vaccine that elicits robust CMI. IMPORTANCE Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is currently available, and treatment is costly and often results in side effects, limiting the number of patients who are treated. Despite recent advances in treatment, prevention remains the key to efficient control and elimination of this virus. Here, we describe a novel DNA vaccine against hepatitis C virus that is capable of inducing robust cell-mediated immune responses in mice and is a promising vaccine candidate for humans.
Resumo:
The objective of this paper was to develop the seismic hazard maps of Patna district considering the region-specific maximum magnitude and ground motion prediction equation (GMPEs) by worst-case deterministic and classical probabilistic approaches. Patna, located near Himalayan active seismic region has been subjected to destructive earthquakes such as 1803 and 1934 Bihar-Nepal earthquakes. Based on the past seismicity and earthquake damage distribution, linear sources and seismic events have been considered at radius of about 500 km around Patna district center. Maximum magnitude (M (max)) has been estimated based on the conventional approaches such as maximum observed magnitude (M (max) (obs) ) and/or increment of 0.5, Kijko method and regional rupture characteristics. Maximum of these three is taken as maximum probable magnitude for each source. Twenty-seven ground motion prediction equations (GMPEs) are found applicable for Patna region. Of these, suitable region-specific GMPEs are selected by performing the `efficacy test,' which makes use of log-likelihood. Maximum magnitude and selected GMPEs are used to estimate PGA and spectral acceleration at 0.2 and 1 s and mapped for worst-case deterministic approach and 2 and 10 % period of exceedance in 50 years. Furthermore, seismic hazard results are used to develop the deaggregation plot to quantify the contribution of seismic sources in terms of magnitude and distance. In this study, normalized site-specific design spectrum has been developed by dividing the hazard map into four zones based on the peak ground acceleration values. This site-specific response spectrum has been compared with recent Sikkim 2011 earthquake and Indian seismic code IS1893.
Resumo:
Highly conserved residues in enzymes are often found to be clustered close to active sites, suggesting that functional constraints dictate the nature of amino acid residues accommodated at these sites. Using the Plasmodiumfalciparum triosephosphate isomerase (PfTIM) enzyme () as a template, we have examined the effects of mutations at positions 64 and 75, which are not directly involved in the proton transfer cycle. Thr (T) occurring at position 75 is completely conserved, whereas only Gln (Q) and Glu (E) are accommodated at position 64. Biophysical and kinetic data are reported for four T75 (T75S/V/C/N) and two Q64 (Q64N/E) mutants. The dimeric structure is weakened in the Q64E and Q64N mutants, whereas dimer integrity is unimpaired in all four T75 mutants. Measurement of the concentration dependence of enzyme activity permits an estimate of K-d values for dimer dissociation (Q64N=73.79.2nm and Q64E=44.6 +/- 8.4nm). The T75S/V/C mutants have activities comparable to the wild-type enzyme, whereas a fourfold drop is observed for T75N. All four T75 mutants show a dramatic fall in activity between 35 degrees C and 45 degrees C. Crystal structure determination of the T75S/V/N mutants provides insights into the variations in local interactions, with the T75N mutant showing the largest changes. Hydrogen-bond interactions determine dimer stability restricting the choice of residues at position 64 to Gln (Q) and Glu (E). At position 75, the overwhelming preference for Thr (T) may be dictated by the imperative of maintaining temperature stability of enzyme activity.
Resumo:
Biomolecular recognition underlying drug-target interactions is determined by both binding affinity and specificity. Whilst, quantification of binding efficacy is possible, determining specificity remains a challenge, as it requires affinity data for multiple targets with the same ligand dataset. Thus, understanding the interaction space by mapping the target space to model its complementary chemical space through computational techniques are desirable. In this study, active site architecture of FabD drug target in two apicomplexan parasites viz. Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed by consensus docking calculations and identification of fifteen best hit compounds, most of which are found to be derivatives of natural products. Subsequently, machine learning techniques were applied on molecular descriptors of six FabD homologs and sixty ligands to induce distinct multivariate partial-least square models. The biological space of FabD mapped by the various chemical entities explain their interaction space in general. It also highlights the selective variations in FabD of apicomplexan parasites with that of the host. Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and improve binding affinity in combination with other functional descriptors conducive for the design and optimization of the leads.
Resumo:
We present a quantum dot based DNA nanosensor specifically targeting the cleavage step in the reaction cycle of the essential DNA-modifying enzyme, mycobacterial topoisomerase I. The design takes advantages of the unique photophysical properties of quantum dots to generate visible fluorescence recovery upon specific cleavage by mycobacterial topoisomerase I. This report, for the first time, demonstrates the possibility to quantify the cleavage activity of the mycobacterial enzyme without the pre-processing sample purification or post-processing signal amplification. The cleavage induced signal response has also proven reliable in biological matrices, such as whole cell extracts prepared from Escherichia coli and human Caco-2 cells. It is expected that the assay may contribute to the clinical diagnostics of bacterial diseases, as well as the evaluation of treatment outcomes.
Resumo:
Emerging data on cancer suggesting that target-based therapy is promising strategy in cancer treatment. PI3K-AKT pathway is extensively studied in many cancers; several inhibitors target this pathway in different levels. Recent finding on this pathway uncovered the therapeutic applications of PI3K-specific inhibitors; PI3K, AKT, and mTORC broad spectrum inhibitors. Noticeably, class I PI3K isoforms, p110 and p110 catalytic subunits have rational therapeutic application than other isoforms. Therefore, three classes of inhibitors: isoform-specific, dual-specific and broad spectrum were selected for molecular docking and dynamics. First, p110 structure was modelled; active site was analyzed. Then, molecular docking of each class of inhibitors were studied; the docked complexes were further used in 1.2ns molecular dynamics simulation to report the potency of each class of inhibitor. Remarkably, both the studies retained the similar kind of protein ligand interactions. GDC-0941, XL-147 (broad spectrum); TG100-115 (dual-specific); and AS-252424, PIK-294 (isoform-specific) were found to be potential inhibitors of p110 and p110, respectively. In addition to that pharmacokinetic properties are within recommended ranges. Finally, molecular phylogeny revealed that p110 and p110 are evolutionarily divergent; they probably need separate strategies for drug development.
Resumo:
Background: DNA methylation and its perturbations are an established attribute to a wide spectrum of phenotypic variations and disease conditions. Indian traditional system practices personalized medicine through indigenous concept of distinctly descriptive physiological, psychological and anatomical features known as prakriti. Here we attempted to establish DNA methylation differences in these three prakriti phenotypes. Methods: Following structured and objective measurement of 3416 subjects, whole blood DNA of 147 healthy male individuals belonging to defined prakriti (Vata, Pitta and Kapha) between the age group of 20-30years were subjected to methylated DNA immunoprecipitation (MeDIP) and microarray analysis. After data analysis, prakriti specific signatures were validated through bisulfite DNA sequencing. Results: Differentially methylated regions in CpG islands and shores were significantly enriched in promoters/UTRs and gene body regions. Phenotypes characterized by higher metabolism (Pitta prakriti) in individuals showed distinct promoter (34) and gene body methylation (204), followed by Vata prakriti which correlates to motion showed DNA methylation in 52 promoters and 139 CpG islands and finally individuals with structural attributes (Kapha prakriti) with 23 and 19 promoters and CpG islands respectively. Bisulfite DNA sequencing of prakriti specific multiple CpG sites in promoters and 5'-UTR such as; LHX1 (Vata prakriti), SOX11 (Pitta prakriti) and CDH22 (Kapha prakriti) were validated. Kapha prakriti specific CDH22 5'-UTR CpG methylation was also found to be associated with higher body mass index (BMI). Conclusion: Differential DNA methylation signatures in three distinct prakriti phenotypes demonstrate the epigenetic basis of Indian traditional human classification which may have relevance to personalized medicine.
Resumo:
Cell lines derived from tumor tissues have been used as a valuable system to study gene regulation and cancer development. Comprehensive characterization of the genetic background of cell lines could provide clues on novel genes responsible for carcinogenesis and help in choosing cell lines for particular studies. Here, we have carried out whole exome and RNA sequencing of commonly used glioblastoma (GBM) cell lines (U87, T98G, LN229, U343, U373 and LN18) to unearth single nucleotide variations (SNVs), indels, differential gene expression, gene fusions and RNA editing events. We obtained an average of 41,071 SNVs out of which 1,594 (3.88%) were potentially cancer-specific. The cell lines showed frequent SNVs and indels in some of the genes that are known to be altered in GBM-EGFR, TP53, PTEN, SPTA1 and NF1. Chromatin modifying genes-ATRX, MLL3, MLL4, SETD2 and SRCAP also showed alterations. While no cell line carried IDH1 mutations, five cell lines showed hTERT promoter activating mutations with a concomitant increase in hTERT transcript levels. Five significant gene fusions were found of which NUP93-CYB5B was validated. An average of 18,949 RNA editing events was also obtained. Thus we have generated a comprehensive catalogue of genetic alterations for six GBM cell lines.