996 resultados para Sound propagation
Resumo:
Based on the paraxial vectorial theory of beams propagating in uniaxially anisotropic media, we have derived the analytical propagation equations of beams generated by Gaussian mirror resonator (GMR) in uniaxial crystals, and given the typical numerical example to illustrate our analytical results. Due to the anisotropy crystals, the ordinary and extraordinary beams originated by incident beams generated by GMR propagate with different diffraction lengths, thus the linear polarization state and axial symmetry of the incident beams generated by GMR do not remain during propagating in crystals. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Based on the vectorial Raleigh-Sommerfeld diffraction integral, the nonparaxial. propagation of vectorial hollow Gaussian beams (HGBs) in free space is studied. The far-field and paraxial cases can be treated as special cases of our general results. The typical numerical examples are given to illustrate our analytical results and comparisons between the different approximations present that the f parameter still plays an important role in determining the nonparaxiality of vectorial diffracted HGBs. (c) 2007 Optical Society of America.
Resumo:
Based on the paraxial vectorial theory of beams propagating in uniaxially anisotropic media, we have derived the analytical propagation equations of hollow Gaussian beams (HGBs) in uniaxial crystals, and given the typical numerical example to illustrate our analytical results. Due to the anisotropy crystals, the ordinary and extraordinary beams originated by incident HGBs propagate with different diffraction lengths, thus the linear polarization state and axial symmetry of incident HGBs do not remain during propagating in crystals. (c) 2007 Published by Elsevier B.V.
Resumo:
Acoustic recorders were used to document black drum (Pogonias cromis) sound production during their spawning season in southwest Florida. Diel patterns of sound production were similar to those of other sciaenid fishes and demonstrated increased sound levels from the late afternoon to early evening—a period that lasted up to 12 hours during peak season. Peak sound production occurred from January through March when water temperatures were between 18° and 22°C. Seasonal trends in sound production matched patterns of black drum reproductive readiness and spawning reported previously for populations in the Gulf of Mexico. Total acoustic energy of nightly chorus events was estimated by integration of the sound pressure amplitude with duration above a threshold based on daytime background levels. Maximum chorus sound level was highly correlated with total acoustic energy and was used to quantitatively represent nightly black drum sound production. This study gives evidence that long-term passive acoustic recordings can provide information on the timing and location of black drum reproductive behavior that is similar to that provided by traditional, more costly methods. The methods and results have broad application for the study of many other fish species, including commercially and recreationally valuable reef fishes that produce sound in association with reproductive behav
Resumo:
Fjord estuaries are common along the northeast Pacific coastline, but little information is available on fish assemblage structure and its spatiotemporal variability. Here, we examined changes in diversity metrics, species biomasses, and biomass spectra (the distribution of biomass across body size classes) over three seasons (fall, winter, summer) and at multiple depths (20 to 160 m) in Puget Sound, Washington, a deep and highly urbanized fjord estuary on the U.S. west coast. Our results indicate that this fish assemblage is dominated by cartilaginous species (spotted ratfish [Hydrolagus colliei] and spiny dogfish [Squalus acanthias]) and therefore differs fundamentally from fish assemblages found in shallower estuaries in the northeast Pacific. Diversity was greatest in shallow waters (<40 m), where the assemblage was composed primarily of flatfishes and sculpins, and lowest in deep waters (>80 m) that are more common in Puget Sound and that are dominated by spotted ratf ish and seasonally (fall and summer) by spiny dogfish. Strong depth-dependent variation in the demersal fish assemblage may be a general feature of deep fjord estuaries and indicates pronounced spatial variability in the food web. Future comparisons with less impacted fjords may offer insight into whether cartilaginous species naturally dominate these systems or only do so under conditions related to human-caused ecosystem degradation. Information on species distributions is critical for marine spatial planning and for modeling energy flows in coastal food webs. The data presented here will aid these endeavors and highlight areas for future research in this important yet understudied system.
Resumo:
Fish species of warmwater origin appear in northeastern U.S. coastal waters in the late summer and remain until late fall when the temperate waters cool. The annual abundance and species composition of warm-water species is highly variable from year to year, and these variables may have effects on the trophic dynamics of this region. To understand this variability, records of warm-water fish occurrence were examined in two neighboring temperate areas, Narragansett Bay and Long Island Sound. The most abundant fish species were the same in both areas, and regional abundances peaked in both areas in the middle of September, four weeks after the maximum temperature in the middle of August. On average, abundance of warm-water species increased throughout the years sampled, although this increase can not be said to be exclusively related to temperature. Weekly mean temperatures between the two locations were highly correlated (r= 0.99; P<0.001). The warm-water fish faunas were distinctly different in annual abundances in the two areas for each species by year (1987–2000), and these differences ref lect the variability in the transport processes to temperate estuaries. The results reveal information on the abundance of warm-water fish in relation to trends toward warmer waters in these region
Resumo:
Spawning periodicities of white seabass (Atractoscion nobilis) were evaluated by observing spawning behavior, by collecting eggs, and monitoring recognizable sounds produced during the release of gametes. A total of 297 spawning events were documented from 15 male and 47 female white seabass contained within the seminatural confines of a 526-m3 net pen located in Catalina Harbor, Santa Catalina Island, California. Consistent spawning occurred from March through July 2001−03, and peaked in May at a photoperiod of 14 hours. Most spawning occurred within the 2-hour period following sunset or from 19:00−20:00 hours Pacific Standard Time. White seabass spawned at every phase of the lunar cycle; but an increase in successive spawning events followed the new moon. Most spawning occurred in water temperatures from 15 to 18°C, and there was no apparent correlation with tidal cycles. Seasonal and diel spawning periods were directly correlated with increases in the rate, intensity, and variety of white seabass sounds; this correlation may indicate that sounds function to enhance reproductive success. These findings can be extended to further develop seasonal fishery regulations and to better comprehend the role of sound in the reproduction of sound-producing fishes.
Resumo:
A cheap method of propagating the African catfish, Clarias gariepinus, by incubating the fertilized eggs in a cage placed directly in a flowing river is described. Hatching ranged between 39 and 70%. This is not significantly different from the commonly used water recirculating flow through system. The economic advantages of the river hatching method are discussed with special emphasis on the rural fish farmers.