976 resultados para Sonar Projector Arrays


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the problem of low-dimensional visualisation of very high dimensional information sources for the purpose of situation awareness in the maritime environment. In response to the requirement for human decision support aids to reduce information overload (and specifically, data amenable to inter-point relative similarity measures) appropriate to the below-water maritime domain, we are investigating a preliminary prototype topographic visualisation model. The focus of the current paper is on the mathematical problem of exploiting a relative dissimilarity representation of signals in a visual informatics mapping model, driven by real-world sonar systems. A realistic noise model is explored and incorporated into non-linear and topographic visualisation algorithms building on the approach of [9]. Concepts are illustrated using a real world dataset of 32 hydrophones monitoring a shallow-water environment in which targets are present and dynamic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-lived light bullets fully localized in both space and time can be generated in novel photonic media such as multicore optical fiber or waveguide arrays. In this paper we present detailed theoretical analysis on the existence and stability of the discrete-continuous light bullets using a very generic model that occurs in a number of applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 78A50

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly sensitive and selective detection of volatile organic compounds (VOCs) with fast response time is imperative based on safety requirements, yet often remains a challenge. Herein, we propose an effective solution, preparing a novel gas sensor comprised of amorphous nanoflake arrays (a-NFAs) with specific surface groups. The sensor was produced via an extremely simple process in which a-NFAs of CdO were deposited directly onto an interdigital electrode immersed in a chemical bath under ambient conditions. Upon exposure to a widely used VOC, diethyl ether (DEE), the sensor exhibits excellent performance, more specifically, the quickest response, lowest detection limit and highest selectivity ever reported for DEE as a target gas. The superior gas-sensing properties of the prepared a-NFAs are found to arise from their open trumpet-shaped morphology, defect-rich amorphous nature, and surface CO groups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utilization of solar energy by photovoltaic (PV) systems have received much research and development (R&D) attention across the globe. In the past decades, a large number of PV array have been installed. Since the installed PV arrays often operate in harsh environments, non-uniform aging can occur and impact adversely on the performance of PV systems, especially in the middle and late periods of their service life. Due to the high cost of replacing aged PV modules by new modules, it is appealing to improve energy efficiency of aged PV systems. For this purpose, this paper presents a PV module reconfiguration strategy to achieve the maximum power generation from non-uniformly aged PV arrays without significant investment. The proposed reconfiguration strategy is based on the cell-unit structure of PV modules, the operating voltage limit of gird-connected converter, and the resulted bucket-effect of the maximum short circuit current. The objectives are to analyze all the potential reorganization options of the PV modules, find the maximum power point and express it in a proposition. This proposition is further developed into a novel implementable algorithm to calculate the maximum power generation and the corresponding reconfiguration of the PV modules. The immediate benefits from this reconfiguration are the increased total power output and maximum power point voltage information for global maximum power point tracking (MPPT). A PV array simulation model is used to illustrate the proposed method under three different cases. Furthermore, an experimental rig is built to verify the effectiveness of the proposed method. The proposed method will open an effective approach for condition-based maintenance of emerging aging PV arrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a low-energy glow-discharge process using reactive ion etching system that enables non-circular device patterns, such as squares or hexagons, to be formed from a precursor array of uniform circular openings in polymethyl methacrylate, PMMA, defined by electron beam lithography. This technique is of a particular interest for bit-patterned magnetic recording medium fabrication, where close packed square magnetic bits may improve its recording performance. The process and results of generating close packed square patterns by self-limiting low-energy glow-discharge are investigated. Dense magnetic arrays formed by electrochemical deposition of nickel over self-limiting formed molds are demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) have become one of the most interesting allotropes of carbon due to their intriguing mechanical, electrical, thermal and optical properties. The synthesis and electron emission properties of CNT arrays have been investigated in this work. Vertically aligned CNTs of different densities were synthesized on copper substrate with catalyst dots patterned by nanosphere lithography. The CNTs synthesized with catalyst dots patterned by spheres of 500 nm diameter exhibited the best electron emission properties with the lowest turn-on/threshold electric fields and the highest field enhancement factor. Furthermore, CNTs were treated with NH3 plasma for various durations and the optimum enhancement was obtained for a plasma treatment of 1.0 min. CNT point emitters were also synthesized on a flat-tip or a sharp-tip to understand the effect of emitter geometry on the electron emission. The experimental results show that electron emission can be enhanced by decreasing the screening effect of the electric field by neighboring CNTs. In another part of the dissertation, vertically aligned CNTs were synthesized on stainless steel (SS) substrates with and without chemical etching or catalyst deposition. The density and length of CNTs were determined by synthesis time. For a prolonged growth time, the catalyst activity terminated and the plasma started etching CNTs destructively. CNTs with uniform diameter and length were synthesized on SS substrates subjected to chemical etching for a period of 40 minutes before the growth. The direct contact of CNTs with stainless steel allowed for the better field emission performance of CNTs synthesized on pristine SS as compared to the CNTs synthesized on Ni/Cr coated SS. Finally, fabrication of large arrays of free-standing vertically aligned CNT/SnO2 core-shell structures was explored by using a simple wet-chemical route. The structure of the SnO2 nanoparticles was studied by X-ray diffraction and electron microscopy. Transmission electron microscopy reveals that a uniform layer of SnO2 is conformally coated on every tapered CNT. The strong adhesion of CNTs with SS guaranteed the formation of the core-shell structures of CNTs with SnO2 or other metal oxides, which are expected to have applications in chemical sensors and lithium ion batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retrieval, treatment, and disposal of high-level radioactive waste (HLW) is expected to cost between 100 and 300 billion dollars. The risk to workers, public health, and the environment are also a major area of concern for HLW. Visualization of the interface between settled solids and the optically opaque liquid is needed for retrieval of the waste from underground storage tanks. A Profiling sonar selected for this research generates 2-D image of the interface. Multiple experiments were performed to demonstrate the effectiveness of sonar in real-time monitoring the interface inside HLW tanks. First set of experiments demonstrated that objects shapes could be identified even when 30% of solids entrained in liquid, thereby mapping the interface. Simulation of sonar system validated these results. Second set of experiments confirmed the sonar’s ability in detecting the solids with density similar to the immersed liquid. Third set of experiments determined the affects of near by objects on image resolution. Final set of experiments proved the functional and chemical capabilities of sonar in caustic solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The field emission measurements for the multistage structured nanotubes (i.e., thin-multiwall and single wall carbon nanotubes grown on multiwall carbon nanotubes) were carried out and a low turn-on field of ~0.45 V/ μm, high emission current of 450 μA at a field of IV/μm and a large field enhancement factor of ~26200 were obtained. The thin multiwall carbon nanotubes (thin-MWNTs) and single wall carbon nanotubes (SWNTs) were grown on the regular arrays of vertically aligned multi wall carbon nanotubes (MWNTs) on porous silicon substrate by Chemical Vapor Deposition (CVD) method. The thin-MWNTs and SWNTs grown on MWNTs in this way have a multistage structure which gives higher enhancement of the electric field and hence the electron field emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In multibeam echosounder and subbottom profiler data acquired during R/V Polarstern cruise ARK-VII/3a from the Hovgaard Ridge (Fram Strait), we found evidence for very deep (>1200 m) iceberg scouring. Five elongated seafloor features have been detected that are interpreted to be iceberg scours. The scours are oriented in north-south/south-north direction and are about 15 m deep, 300 m wide, and 4 km long crossing the entire width of the ridge. They are attributed to multiple giant paleo-icebergs that most probably left the Arctic Ocean southward through Fram Strait. The huge keel depths are indicative of ice sheets extending into the Arctic Ocean being at least 1200 m thick at the calving front during glacial maxima. The deep St. Anna Trough or grounded ice observed at the East Siberian Continental Margin are likely source regions of these icebergs that delivered freshwater to the Nordic Seas.