944 resultados para Sol-gel synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural evolution during sintering of compacted SnO2 sol-gel powder was investigated using nitrogen adsorption isotherm analysis. Results show that for sintering temperatures up to 400°C the samples have a fractal pore size distribution. As the sintering temperature increases, a structural rearragement occurs, allowing an increase of the efficiency of particle packing and the reduction of fractality. Above 400°C, the pore size growth associated with grain coalescence is the main structural change observed as the sintering temperature increases. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diphasic gel in the mullite composition was prepared from a colloidal sol of boehmite mixed with a hydrolyzed tetraethoxisilane (TEOS) solution. The boehmite sol was obtained by peptization of a poorly crystallized or very small mean crystallite size (∼34 Å) precipitate, resulting from the reaction between solutions of aluminum sulfate and sodium hydroxide. Ultrasound was utilized in the processes of the TEOS hydrolysis and the boehmite peptization, and also for complete homogenization of the mixture to gel. The wet gel is almost clear and monolithic. The gel transparency is lost on drying, when syneresis has ended, so that the interlinked pore structure starts to empty and is recovered upon water re-absorption. Cracking closely accompanies this critical drying process. Differential thermal analysis (DTA) and X-ray diffraction (XRD) show that the solid structure of the gel is composed of an amorphous silica phase, as a matrix, and a colloidal sized crystalline phase of boehmite. Upon heat treatment, the boehmite phase within the gel closely follows the same transition sequence as in pure alumina shifted towards higher temperatures. Orthorhombic mullite formation was detected at 1300°C. © 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2-3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improve the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg ≅ 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since oxygen vacancies act as donors in SnO2, the electrical properties are related to deviation from stoichiometric composition. Depending on stoichiometry SnO2 can be highly insulating or may exhibit fairly high n-type conductivity. Since bandgap transitions are in the ultraviolet range, its photoconductivity is strongly dependent on the excitation source. We have measured variation of photoconductivity excitation with wavelength for tin dioxide grown by dip-coating sol-gel technique using several light sources: tungsten lamp, xenon, mercury and deuterium, and present selected results. The main band is obtained in the range 3-4eV according to light source spectrum in the ultraviolet range. The presence of oxygen in the cryostat also affects the spectrum since electron-hole pairs react with adsorbed oxygen specimens. © 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the effect of the concentration of electrolyte and pH on the kinetics of aggregation and gelation processes of SnO2 colloidal suspensions. Creep, creep-recovery, and oscillatory rheological experiments have been done in situ during aggregation and gelation. A phenomenological description of the structure of the colloidal system is given from the time evolution of rheological parameters. The dependence of the equilibrium steady-state shear compliance on the terminal region of clusters or aggregates seems to be a way to determine the beginning of interconnection of aggregates and the gel point. We propose that at this point the equilibrium steady-state compliance is a minimum. The steady-state viscosity determined from creep experiment can be fit with a power law with the extent of the transformation, giving critical exponent s = 0.7 ± 0.1. The value of the critical exponent Δ = 0.78 ± 0.05 was determined from oscillatory experiment. These results indicate that gelation of SnO2 colloidal suspension exhibits the typical scale expected from the scalar percolation theory. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new process for the surface modification of hydrogen storage intermetallic particles used as anode material in secondary batteries is proposed in this article. The copper oxide particles coverage obtained by the sol-gel method is proposed to produce, under operational conditions of a Ni-MH battery, a metallic framework that tolerates the volume changes in charge/discharge cycles and does not inhibit the hydrogen absorption. Furthermore it was noticed an enhancement on the discharge capacity of the electrode material that can be related to a new hydrogen storage phase or to an inhibition of the surface oxidation promoted by the film coverage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic and structural properties of sol-gel derived organic/inorganic nanocomposites doped with Fe(II), Fe(III), Nd(III) and Eu (III) ions are discussed. These hybrids consist of poly(oxyethylene)-based chains grafted onto siloxane nanodomains by urea cross-linkages. Small angle X-ray scattering data show the presence of spatial correlations of siloxane domains embedded in the polymer matrix. The magnetic properties of rare-earth doped samples are determined by single ion crystal-field-splitted levels (Eu3+ J=0; Nd3+ J=9/2) and the small thermal irreversibility is mainly associated to structural effects. Fe2+ -doped samples behave as simple paramagnet with residual antiferromagnetic interactions. Fe3+-doped hybrids are much more complex, with magnetic hysterisis, exchange anisotropy and thermal irreversibility at low temperatures. Néel temperatures increase up to 14K for the highest (∼5.5%) Fe3+ mass concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes a modified sol-gel method for the preparation of V 2O 5/TiO 2 catalysts. The samples have been characterized by N 2 adsorption at 77K, x-ray diffractometry (XRD) and Fourier Transform Infrared (FT-IR). The surface area increases with the vanadia loading from 24 m 2 g -1, for pure TiO 2, to 87 m 2 g -1 for 9wt.% of V 2O 5. The rutile form is predominant for pure TiO 2 but became enriched with anatase phase when vanadia loading is increased. No crystalline V 2O 5 phase was observed in the catalysts diffractograms. Two species of surface vanadium observed by FT-IR spectroscopy a monomeric vanadyl and polymeric vanadates, the vanadyl/vanadate ratio remains practically constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SnO2 deposited by sol-gel is a polycrystalline film with small grain size. Oxygen present at a less grain boundary traps electrons and then the depletion layer around the potential barrier of the grain boundary becomes wider, comparable to the grain size. We have modeled the conductivity taking into account the trapped charge at the depletion layer of the grain boundary and other scattering mechanisms such as ionized impurity and polar optical. Experimental data of photoconductivity of SnO2 sol-gel films are simulated considering the dominant scattering at grain boundary and crystallite bulk. The fraction of trapped charge at the grain boundary depends on temperature and wavelength of irradiating light, being as high as 50% for illumination in the range 500-600 nm for SnO2-2%Nb as grown sample annealed in air to 550°C. This fraction can be quite reduced depending on exposure to light and annealing under different oxygen partial pressure conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium activated SiO2 -HfO2 planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-gel method. The films were deposited on v-SiO2 and silica-on-silicon substrates using dip-coating technique. The waveguides show high densification degree, effective intermingling of the two film components, and uniform surface morphology. The waveguide deposited on silica-on-silicon substrates shows one single propagation mode at 1.5μm, with a confinement coefficient of 0.81 and an attenuation coefficient of 0.8 dB/cm at 632.8nm. Emission in the C-telecommunication band was observed at room temperature for all the samples upon continuouswave excitation at 980 nm or 514.5 nm. The shape of the emission band corresponding to the 4I13/2 → 4I15/2 transition is found to be almost independent both on erbium content and excitation wavelength, with a FWHM between 44 and 48 nm. The 4I13/2 level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 - 6.6 ms, depending on the erbium concentration. Infrared to visible upconversion luminescence upon continuous-wave excitation at 980 nm was observed for all the samples. Channel waveguide in rib configuration was obtained by etching the active film in order to have a well confined mode at 1.5 μm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of sulfated zirconia films from a sol-gel derived aqueous suspension is subjected to double-optical monitoring during batch dip coating. Interpretation of interferometric patterns, previously obscured by a variable refractive index, is now made possible by addition of its direct measurement by a polarimetric technique in real time. Significant sensitivity of the resulting physical thickness and refractive index curves (uncertainties of ±7 nm and ±0.005, respectively) to temporal film evolution is shown under different withdrawal speeds. As a first contribution to quantitative understanding of temporal film formation with varying nanostructure during dip coating, detailed analysis is directed to the stage of the process dominated by mass drainage, whose simple modeling with temporal t-1/2 dependence is verified experimentally. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoluminescence and photo-excited conductivity data as well as structural analysis are presented for sol-gel SnO2 thin films doped with rare earth ions Eu3+ and Er3+, deposited by sol-gel-dip-coating technique. Photoluminescence spectra are obtained under excitation with various types of monochromatic light sources, such as Kr+, Ar+ and Nd:YAG lasers, besides a Xe lamp plus a selective monochromator with UV grating. The luminescence fine structure is rather different depending on the location of the rare-earth doping, at lattice symmetric sites or segregated at the asymmetric grain boundary layer sites. The decay of photo-excited conductivity also shows different trapping rate depending on the rare-earth concentration. For Er-doped films, above the saturation limit, the evaluated capture energy is higher than for films with concentration below the limit, in good agreement with the different behaviour obtained from luminescence data. For Eu-doped films, the difference in the capture energy is not so evident in these materials with nanoscocopic crystallites, even though the luminescence spectra are rather distinct. It seems that grain boundary scattering plays a major role in Eu-doped SnO2 films. Structural evaluation helps to interpret the electro-optical data. © 2010 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the sol-gel preparation and structural and optical characterization of new Er3+-doped SiO2-Nb 2O5 nanocomposite planar waveguides. Erbium-doped (100-x)SiO2-xNb2O5 waveguides were deposited on silica-on-silicon substrates and Si(1 0 0) by the dip-coating technique. The waveguides exhibited uniform refractive index distribution across the thickness, efficient light injection at 1538 nm, and low losses at 632 and 1538 nm. The band-gap values lied between 4.12 eV and 3.55 eV for W1-W5, respectively, showing an excellent transparency in the visible and near infrared region for the waveguides. Fourier Transform Infrared (FTIR) Spectroscopy analysis evidenced SiO2-Nb2O5 nanocomposite formation with controlled phase separation in the films. The HRTEM and XRD analyses revealed Nb2O5 orthorhombic T-phase nanocrystals dispersed in a silica-based host. Photoluminescence (PL) analysis showed a broad band emission at 1531 nm, assigned to the 4I13/2 → 4I15/2 transition of the Er3+ ions present in the nanocomposite, with a full-width at half medium of 48-68 nm, depending on the niobium content and annealing. Hence, these waveguides are excellent candidates for application in integrated optics, especially in EDWA and WDM devices. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique properties of ceramic foams enable their use in a variety of applications. This work investigated the effects of different parameters on the production of zirconia ceramic foam using the sol-gel process associated with liquid foam templates. Evaluation was made of the influence of the thermal treatment temperature on the porous and crystalline characteristics of foams manufactured using different amounts of sodium dodecylsulfate (SDS) surfactant. A maximum pore volume, with high porosity (94%) and a bimodal pore size distribution, was observed for the ceramic foam produced with 10% SDS. Macropores, with an average size of around 30 μm, were obtained irrespective of the SDS amount, while the average size of the supermesopores increased systematically as the SDS amount was increased up to 10%, after which it decreased. X-ray diffraction analyses showed that the sample treated at 500 °C was amorphous, while crystallization into a tetragonal metastable phase occurred at 600 °C due to the presence of sulfate groups in the zirconia structure. At 800 and 1000 °C the monoclinic phase was observed, which is thermodynamically stable at these temperatures. © 2013 by the authors; licensee MDPI, Basel, Switzerland.