831 resultados para Soft Segment Length
The Europeanisation of the measurement of diversity in education: a soft instrument of public policy
Resumo:
Faced with an increasing number of data and rankings, the author questions the roles of the different groups of actors who were originally involved in questioning the use of statistical indicators as a means of addressing issues of access to higher education. The comparison and nature of these international (UNESCO, OECD, EUROSTAT) and national (Germany, England, France, Switzerland) indicators in matters of inequalities of access to higher education question the tension between the discourses and the indicators they generate, and their recording at the national level. Who says what and with what consequences? What range of actors are involved in this process? What kind of power relations forms them? The author discusses how the issue of inequalities of access to higher education got on to the agendas of European organisations, identifies the policies that were defined, and sets them against an array of indicators, showing the discrepancy between the discourses and what the indicators reveal, the gap between the recommendations and the available tools. Why is there such a contrast? What are the mechanisms at work? Is it a technical or a political problem? What does this discrepancy reveal as far as national specificities within the construction of social inequalities are concerned?
Resumo:
We report a phenomenon occurring in field-responsive suspensions: shear-induced anomalous stresses. Competition between a rotating field and a shear flow originates a multiplicity of anomalous stress behaviors in suspensions of bound dimers constituted by induced dipoles. The great variety of stress regimes includes nonmonotonic behaviors, multiresonances, negative viscosity effect, and blockades. The reversibility of the transitions between the different regimes and the self-similarity of the stresses make this phenomenon controllable and therefore applicable to modify macroscopic properties of soft condensed matter phases.
Resumo:
The objective of this work was to describe a new species of Rhinoleucophenga (Diptera: Drosophilidae). Rhinoleucophenga capixabensis sp. nov. is described based on specimens collected from pineapple (Ananas comosus var. comosus) infested with Dysmicoccus brevipes (Hemiptera: Pseudococcidae) in the state of Espírito Santo, Brazil. Distinguishing characters of R. capixabensis sp. nov. include hyaline wings, a strong seta on the second antennal segment, body length of about 2-3 mm, uniformly dark brown scutellum, one pair of strong prescutellar setae, ventral epandrial lobes with about 17-18 teeth, and female cerci with approximately 20 long setae.
Resumo:
Transport in small-scale biological and soft-matter systems typically occurs under confinement conditions in which particles proceed through obstacles and irregularities of the boundaries that may significantly alter their trajectories. A transport model that assimilates the confinement to the presence of entropic barriers provides an efficient approach to quantify its effect on the particle current and the diffusion coefficient. We review the main peculiarities of entropic transport and treat two cases in which confinement effects play a crucial role, with the appearance of emergent properties. The presence of entropic barriers modifies the mean first-passage time distribution and therefore plays a very important role in ion transport through micro- and nano-channels. The functionality of molecular motors, modeled as Brownian ratchets, is strongly affected when the motor proceeds in a confined medium that may constitute another source of rectification. The interplay between ratchet and entropic rectification gives rise to a wide variety of dynamical behaviors, not observed when the Brownian motor proceeds in an unbounded medium. Entropic transport offers new venues of transport control and particle manipulation and new ways to engineer more efficient devices for transport at the nanoscale.
Resumo:
We have shown that indels in gp120 V4 are associated to the presence of duplicated and palindromic sequences, suggesting that they may be produced by strand-slippage misalignment mechanism. Indels in V4 involved region-specific duplications 9 to 15 bp long, and repeats of various lengths, associated to trinucleotides AAT. No duplications were found in V3 and C3. The frequency of palindromic sequences in individual genes was found to be significantly higher in gp120 (p < or = 3.00E-7), and significantly lower in Tat (p < or = 9.00E-7) than the average frequency calculated over the full genome. The finding of elements of misalignment in association with indels in V4 suggests that these mutations may occur in proviral DNA after integration of HIV into the host genome. It also implies that occurrence of large indels in gp120 is not random but is directed by the presence and distribution of elements of misalignment in the HIV genome.
Resumo:
Glucose metabolism is difficult to image with cellular resolution in mammalian brain tissue, particularly with (18) fluorodeoxy-D-glucose (FDG) positron emission tomography (PET). To this end, we explored the potential of synchrotron-based low-energy X-ray fluorescence (LEXRF) to image the stable isotope of fluorine (F) in phosphorylated FDG (DG-6P) at 1 μm(2) spatial resolution in 3-μm-thick brain slices. The excitation-dependent fluorescence F signal at 676 eV varied linearly with FDG concentration between 0.5 and 10 mM, whereas the endogenous background F signal was undetectable in brain. To validate LEXRF mapping of fluorine, FDG was administered in vitro and in vivo, and the fluorine LEXRF signal from intracellular trapped FDG-6P over selected brain areas rich in radial glia was spectrally quantitated at 1 μm(2) resolution. The subsequent generation of spatial LEXRF maps of F reproduced the expected localization and gradients of glucose metabolism in retinal Müller glia. In addition, FDG uptake was localized to periventricular hypothalamic tanycytes, whose morphological features were imaged simultaneously by X-ray absorption. We conclude that the high specificity of photon emission from F and its spatial mapping at ≤1 μm resolution demonstrates the ability to identify glucose uptake at subcellular resolution and holds remarkable potential for imaging glucose metabolism in biological tissue. © 2012 Wiley Periodicals, Inc.
A Progress Report on Treating Loess, Fine Sands and Soft Limestones with Liquid Binders, HR-20, 1954
Resumo:
Certain areas of Iowa abound in loess, others contain soft limestones that are readily and cheaply available, and a large portion of the state is underlaid with sand. None of these materials is considered suitable in present practices for use in all-weather road construction. The loess is too fine and too difficult to handle; the limestones are considered too soft, and some of the harder ones unsound for this use; the sands are not naturally of the desired gradation and do not lend themselves to blending into satisfactory gradations. The purpose of this project is, therefore, to study and develop means and to determine the feasibility of using these materials, loess, fine sand, and soft limestones, either separately or in combinations in conjunction with liquid binders to produce paving mixtures applicable for all-weather road construction. Also included in the project was the development of methods of processing any of these materials, if necessary, to make them suitable for the desired purpose
Resumo:
We have explored the threshold of tolerance of three unrelated cell types to treatments with potential cytoprotective peptides bound to Tat(48-57) and Antp(43-58) cell-permeable peptide carriers. Both Tat(48-57) and Antp(43-58) are well known for their good efficacy at crossing membranes of different cell types, their overall low toxicity, and their absence of leakage once internalised. Here, we show that concentrations of up to 100 microM of Tat(48-57) were essentially harmless in all cells tested, whereas Antp(43-58) was significantly more toxic. Moreover, all peptides bound to Tat(48-57) and Antp(43-58) triggered significant and length-dependent cytotoxicity when used at concentrations above 10 microM in all but one cell types (208F rat fibroblasts), irrespective of the sequence of the cargo. Absence of cytotoxicity in 208F fibroblasts correlated with poor intracellular peptide uptake, as monitored by confocal laser scanning fluorescence microscopy. Our data further suggest that the onset of cytotoxicity correlates with the activation of two intracellular stress signalling pathways, namely those involving JNK, and to a lesser extent p38 mitogen-activated protein kinases. These responses are of particular concern for cells that are especially sensitive to the activation of stress kinases. Collectively, these results indicate that in order to avoid unwanted and unspecific cytotoxicity, effector molecules bound to Tat(48-57) should be designed with the shortest possible sequence and the highest possible affinity for their binding partners or targets, so that concentrations below 10 microM can be successfully applied to cells without harm. Considering that cytotoxicity associated to Tat(48-57)- and Antp(43-58) bound peptide conjugates was not restricted to a particular type of cells, our data provide a general framework for the design of cell-penetrating peptides that may apply to broader uses of intracellular peptide and drug delivery.
Resumo:
Magnetic resonance angiography (MRA) provides a noninvasive means to detect the presence, location and severity of atherosclerosis throughout the vascular system. In such studies, and especially those in the coronary arteries, the vessel luminal area is typically measured at multiple cross-sectional locations along the course of the artery. The advent of fast volumetric imaging techniques covering proximal to mid segments of coronary arteries necessitates automatic analysis tools requiring minimal manual interactions to robustly measure cross-sectional area along the three-dimensional track of the arteries in under-sampled and non-isotropic datasets. In this work, we present a modular approach based on level set methods to track the vessel centerline, segment the vessel boundaries, and measure transversal area using two user-selected endpoints in each coronary of interest. Arterial area and vessel length are measured using our method and compared to the standard Soap-Bubble reformatting and analysis tool in in-vivo non-contrast enhanced coronary MRA images.
Resumo:
Background: To determine whether misalignment structures such as duplications, repeats, and palindromes are associated to insertions/deletions (indels) in gp120, indicating that indels are indeed frameshift mutations generated by DNA misalignment mechanism. Methods: Cloning and sequencing of a fragment of HIV-1 gp120 spanning C2-C4 derived from plasma RNA in 12 patients with early chronic disease and naïve to antiretroviral therapy. Results: Indels in V4 involved always insertion and deletion of duplicated nucleotide segments, and AAT repeats, and were associated to the presence of palindromic sequences. No duplications were detected in V3 and C3. Palindromic sequences occurred with similar frequencies in V3, C3 and V4; the frequency of palindromes in individual genes was found to be significantly higher in structural (gp120, p ≤ 3.00E-7) and significantly lower in regulatory (Tat, p ≤ 9.00E-7) genes, as compared to the average frequency calculated over the full genome. Discussion: Indels in V4 are associated to misalignment structures (i.e. duplications repeat and palindromes) indicating DNA misalignment as the mechanism underlying length variation in V4. The finding that indels in V4 are caused by DNA misalignment has some very important implications: 1) indels in V4 are likely to occur in proviral DNA (and not in RNA), after integration of HIV into the host genome; 2) they are likely to occur as progressive modifications of the early founder virus during chronic infection, as more and more cells get infected; 3) frameshift mutations involving any number of base pairs are likely to occur evenly across gp120; however, only those mutants carrying a functional gp120 (indels as multiples of three base pairs) will be able to perpetuate the virus cycle and to keep spreading through the population.
Resumo:
OBJECTIVE: Critically ill patients are at high risk of malnutrition. Insufficient nutritional support still remains a widespread problem despite guidelines. The aim of this study was to measure the clinical impact of a two-step interdisciplinary quality nutrition program. DESIGN: Prospective interventional study over three periods (A, baseline; B and C, intervention periods). SETTING: Mixed intensive care unit within a university hospital. PATIENTS: Five hundred seventy-two patients (age 59 ± 17 yrs) requiring >72 hrs of intensive care unit treatment. INTERVENTION: Two-step quality program: 1) bottom-up implementation of feeding guideline; and 2) additional presence of an intensive care unit dietitian. The nutrition protocol was based on the European guidelines. MEASUREMENTS AND MAIN RESULTS: Anthropometric data, intensive care unit severity scores, energy delivery, and cumulated energy balance (daily, day 7, and discharge), feeding route (enteral, parenteral, combined, none-oral), length of intensive care unit and hospital stay, and mortality were collected. Altogether 5800 intensive care unit days were analyzed. Patients in period A were healthier with lower Simplified Acute Physiologic Scale and proportion of "rapidly fatal" McCabe scores. Energy delivery and balance increased gradually: impact was particularly marked on cumulated energy deficit on day 7 which improved from -5870 kcal to -3950 kcal (p < .001). Feeding technique changed significantly with progressive increase of days with nutrition therapy (A: 59% days, B: 69%, C: 71%, p < .001), use of enteral nutrition increased from A to B (stable in C), and days on combined and parenteral nutrition increased progressively. Oral energy intakes were low (mean: 385 kcal*day, 6 kcal*kg*day ). Hospital mortality increased with severity of condition in periods B and C. CONCLUSION: A bottom-up protocol improved nutritional support. The presence of the intensive care unit dietitian provided significant additional progression, which were related to early introduction and route of feeding, and which achieved overall better early energy balance.
Resumo:
[Abstract]
Resumo:
The telomere length in nucleated peripheral blood (PB) cells indirectly reflects the mitotic history of their precursors: the hematopoietic stem cells (HSCs). The average length of telomeres in PB leukocytes can be measured using fluorescence in situ hybridization and flow cytometry (flow FISH). We previously used flow FISH to characterize the age-related turnover of HSCs in healthy individuals. In this review, we describe results of recent flow FISH studies in patients with selected hematopoietic stem cell-associated disorders: chronic myelogenous leukemia (CML) and several bone marrow failure syndromes. CML is characterized by a marked expansion of myeloid Philadelphia chromosome positive (Ph+) cells. Nevertheless, nonmalignant (Ph-) HSCs typically coexist in the bone marrow of CML patients. We analyzed the telomere length in > 150 peripheral blood leukocytes (PBLs) and bone marrow samples of patients with CML as well as samples of Ph- T-lymphocytes. Compared to normal controls, the overall telomere fluorescence in PBLs of patients with CML was significantly reduced. However, no telomere shortening was observed in Ph- T-lymphocytes. Patients in late chronic phase (CP) had significantly shorter telomeres than those assessed earlier in CP. Our data suggest that progressive telomere shortening is correlated with disease progression in CML. Within the group of patients with bone marrow failure syndromes, we only found significantly shortened telomeres (compared to age-adjusted controls) in granulocytes from patients with aplastic anemia (AA). Strikingly, the telomere length in granulocytes from AA patients who had recovered after immunosuppressive therapy (recAA) did not differ significantly from controls, whereas untreated patients and nonresponders with persistent severe pancytopenia (sAANR) showed marked and significant telomere shortening compared to healthy donors and patients with recAA. Furthermore, an inverse correlation between age-adjusted telomere length and peripheral blood counts was found in support of a model in which the degree of cytopenia and the amount of telomere shortening are correlated. These results support the concept of extensive proliferation of HSCs in subgroups of AA patients and suggest a potential use of telomere-length measurements as a prognostic tool in this group of disorders as well.