962 resultados para Sodium-channel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes the spatial-temporal variation of the relative abundance and size of Limnoperna fortunei (Dunker, 1857) collected in São Gonçalo Channel through bottom trawl with a 0.5 cm mesh, at depths between 3 and 6 m. The estimative of mean relative abundance (CPUE) ranged from 2,425.3 individuals per drag (ind./drag) in the spring to 21,715.0 ind./drag in the fall, with an average of 9,515.3 ind./drag throughout the year. The estimated mean density of L. fortunei for the deep region of São Gonçalo Channel ranged from 1.2 to 10.3 ind./m², and it was recorded a maximum density of 84.9 ind./m² in the fall of 2008. The method of sampling using bottom trawl enabled the capture of L. fortunei under the soft muddy bottom of the channel, in different sizes ranging from 0.4 to 3.2 cm. This shows that the structure of the L. fortunei adult population under the bottom of the São Gonçalo Channel is composed mostly of small individuals (<1.4 cm), which represent up to 74% of the population collected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combined media on photographic paper. 55" x 49"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combined media on photographic paper. 55" x 49" Private Collection

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blood pressure follows a circadian rhythm with a physiologic 10% to 20% decrease during the night. There is now increasing evidence that a blunted decrease or an increase in nighttime blood pressure is associated with a greater prevalence of target organ damage and a faster disease progression in patients with chronic kidney diseases. Several factors contribute to the changes in nighttime blood pressure including changes in hormonal profiles such as variations in the activity of the renin-angiotensin and the sympathetic nervous systems. Recently, it was hypothesized that the absence of a blood pressure decrease during the nighttime (nondipping) is in fact a pressure-natriuresis mechanism enabling subjects with an impaired capacity to excrete sodium to remain in sodium balance. In this article, we review the clinical and epidemiologic data that tend to support this hypothesis. Moreover, we show that most, if not all, clinical conditions associated with an impaired dipping profile are diseases associated either with a low glomerular filtration rate and/or an impaired ability to excrete sodium. These observations would suggest that renal function, and most importantly the ability to eliminate sodium during the day, is indeed a key determinant of the circadian rhythm of blood pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The voltage-gated cardiac potassium channel hERG1 (human ether-à-gogo-related gene 1) plays a key role in the repolarization phase of the cardiac action potential (AP). Mutations in its gene, KCNH2, can lead to defects in the biosynthesis and maturation of the channel, resulting in congenital long QT syndrome (LQTS). To identify the molecular mechanisms regulating the density of hERG1 channels at the plasma membrane, we investigated channel ubiquitylation by ubiquitin ligase Nedd4-2, a post-translational regulatory mechanism previously linked to other ion channels. We found that whole-cell hERG1 currents recorded in HEK293 cells were decreased upon neural precursor cell expressed developmentally down-regulated 4-2 (Nedd4-2) co-expression. The amount of hERG1 channels in total HEK293 lysates and at the cell surface, as assessed by Western blot and biotinylation assays, respectively, were concomitantly decreased. Nedd4-2 and hERG1 interact via a PY motif located in the C-terminus of hERG1. Finally, we determined that Nedd4-2 mediates ubiquitylation of hERG1 and that deletion of this motif affects Nedd4-2-dependent regulation. These results suggest that ubiquitylation of the hERG1 protein by Nedd4-2, and its subsequent down-regulation, could represent an important mechanism for modulation of the duration of the human cardiac action potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal systems, and a renal tubular and hemodynamic response that mimics the renal adaptation observed in congestive heart failure (CHF). As beta-blockers play an important role in the management of CHF patients, the effects of metoprolol on the renal response were examined in healthy subjects during sustained LBNP. METHODS: Twenty healthy male subjects were randomized in this double blind, placebo versus metoprolol 200 mg once daily, study. After 10 days of treatment, each subject was exposed to 3 levels of LBNP (0, -10, and -20 mbar) for 1 hour, each level of LBNP being separated by 2 days. Neurohormonal profiles, systemic and renal hemodynamics, as well as renal sodium handling were measured before, during, and after LBNP. RESULTS: Blood pressure and heart rate were significantly lower in the metoprolol group throughout the study (P < 0.01). GFR and RPF were similar in both groups at baseline, and no change in renal hemodynamic values was detected at any level of LBNP. However, a reduction in sodium excretion was observed in the placebo group at -20 mbar, whereas no change was detected in the metoprolol group. An increase in plasma renin activity was also observed at -20 mbar in the placebo group that was not observed with metoprolol. CONCLUSION: The beta-blocker metoprolol prevents the sodium retention induced by lower body negative pressure in healthy subjects despite a lower blood pressure. The prevention of sodium retention may be due to a blunting of the neurohormonal response. These effects of metoprolol on the renal response to LBNP may in part explain the beneficial effects of this agent in heart failure patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolic and respiratory effects of intravenous 0.5 M sodium acetate (at a rate of 2.5 mmol/min during 120 min) were studied in nine normal human subjects. O2 consumption (VO2) and CO2 production (VCO2) were measured continuously by open-circuit indirect calorimetry. VO2 increased from 251 +/- 9 to 281 +/- 9 ml/min (P < 0.001), energy expenditure increased from 4.95 +/- 0.17 kJ/min baseline to 5.58 +/- 0.16 kJ/min (P < 0.001), and VCO2 decreased nonsignificantly (211 +/- 7 ml/min vs. 202 +/- 7 ml/min, NS). The extrapulmonary CO2 loss (i.e., bicarbonate generation and excretion) was estimated at 48 +/- 5 ml/min. This observation is consistent with 1 mol of bicarbonate generated from 1 mol of acetate metabolized. Alveolar ventilation decreased from 3.5 +/- 0.2 l/min basal to 3.1 +/- 0.2 l/min (P < 0.001). The minute ventilation (VE) to VO2 ratio decreased from 22.9 +/- 1.3 to 17.6 +/- 0.9 l/l (P < 0.005), arterial PO2 decreased from 93.2 +/- 1.9 to 78.7 +/- 1.6 mmHg (P < 0.0001), arterial PCO2 increased from 39.2 +/- 0.7 to 42.1 +/- 1.1 mmHg (P < 0.0001), pH from 7.40 +/- 0.005 to 7.50 +/- 0.007 (P < 0.005), and arterial bicarbonate concentration from 24.2 +/- 0.7 to 32.9 +/- 1.1 (P < 0.0001). These observations indicate that sodium acetate infusion results in substantial extrapulmonary CO2 loss, which leads to a relative decrease of total and alveolar ventilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of the thiazide-sensitive Na(+)/Cl(-) cotransporter (NCC) and of the amiloride-sensitive epithelial Na(+) channel (ENaC) is pivotal for blood pressure regulation. NCC is responsible for Na(+) reabsorption in the distal convoluted tubule (DCT) of the nephron, while ENaC reabsorbs the filtered Na(+) in the late DCT and in the cortical collecting ducts (CCD) providing the final renal adjustment to Na(+) balance. Here, we aim to highlight the recent advances made using transgenic mouse models towards the understanding of the regulation of NCC and ENaC function relevant to the control of sodium balance and blood pressure. We thus like to pave the way for common mechanisms regulating these two sodium-transporting proteins and their potential implication in structural remodeling of the nephron segments and Na(+) and Cl(-) reabsorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In all actual clinical guidelines, dihydropyridine calcium channel blockers (CCBs) belong to the recommended first line antihypertensive drugs to treat essential hypertension. Several recent large clinical trials have confirmed their efficacy not only in lowering blood pressure but also in reducing cardiovascular morbidity and mortality in hypertensive patients with a normal or high cardiovascular risk profile. In clinical trials such as ALLHAT, VALUE or ASCOT, an amlodipine-based therapy was at least as effective, when not slightly superior, in lowering blood pressure and sometimes more effective in preventing target organ damages than blood pressure lowering strategies based on the use of diuretics, beta-blockers and blockers of the renin-angiotensin system. One of the main clinical side effects of the first and second generation CCBs including amlodipine is the development of peripheral edema. The incidence of leg edema can be markedly reduced by combining the CCB with a blocker of the renin-angiotensin system. This strategy has now led to the development of several fixed-dose combinations of amlodipine and angiotensin II receptor antagonists. Another alternative to lower the incidence of edema is to use CCBs of the third generation such as lercanidipine. Indeed, although no major clinical trials have been conducted with this compound, clinical studies have shown that lercanidipine and amlodipine have a comparable antihypertensive efficacy but with significantly less peripheral edema in patients receiving lercanidipine. In some countries, lercanidipine is now available in a single-pill association with an ACE inhibitor thereby further improving its efficacy and tolerability profile.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a theoretical framework analysing the signalling channel of exchange rate interventions as an informational trigger. We develop an implicit target zone framework with learning in order to model the signalling channel. The theoretical premise of the model is that interventions convey signals that communicate information about the exchange rate objectives of central bank. The model is used to analyse the impact of Japanese FX interventions during the period 1999 -2011 on the yen/US dollar dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a theoretical framework analysing the signalling channel of exchange rate interventions as an informational trigger. We develop an implicit target zone framework with learning in order to model the signalling channel. The theoretical premise of the model is that interventions convey signals that communicate information about the exchange rate objectives of central bank. The model is used to analyse the impact of Japanese FX interventions during the period 1999 -2011 on the yen/US dollar dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Depending on its magnitude, lower body negative pressure (LBNP) has been shown to induce a progressive activation of neurohormonal, renal tubular, and renal hemodynamic responses, thereby mimicking the renal responses observed in clinical conditions characterized by a low effective arterial volume such as congestive heart failure. Our objective was to evaluate the impact of angiotensin II receptor blockade with candesartan on the renal hemodynamic and urinary excretory responses to a progressive orthostatic stress in normal subjects. METHODS: Twenty healthy men were submitted to three levels of LBNP (0, -10, and -20 mbar or 0, -7.5, and -15 mm Hg) for 1 hour according to a crossover design with a minimum of 2 days between each level of LBNP. Ten subjects were randomly allocated to receive a placebo and ten others were treated with candesartan 16 mg orally for 10 days before and during the three levels of LBNP. Systemic and renal hemodynamics, renal sodium excretions, and the hormonal response were measured hourly before, during, and for 2 hours after LBNP. RESULTS: During placebo, LBNP induced no change in systemic and renal hemodynamics, but sodium excretion decreased dose dependently with higher levels of LBNP. At -20 mbar, cumulative 3-hour sodium balance was negative at -2.3 +/- 2.3 mmol (mean +/- SEM). With candesartan, mean blood pressure decreased (76 +/- 1 mm Hg vs. 83 +/- 3 mm Hg, candesartan vs. placebo, P < 0.05) and renal plasma flow increased (858 +/- 52 mL/min vs. 639 +/- 36 mL/min, candesartan vs. placebo, P < 0.05). Glomerular filtration rate (GFR) was not significantly higher with candesartan (127 +/- 7 mL/min in placebo vs. 144 +/- 12 mL/min in candesartan). No significant decrease in sodium and water excretion was found during LBNP in candesartan-treated subjects. At -20 mbar, the 3-hour cumulative sodium excretion was + 4.6 +/- 1.4 mmol in the candesartan group (P= 0.02 vs. placebo). CONCLUSION: Selective blockade of angiotensin II type 1 (AT1) receptors with candesartan increases renal blood flow and prevents the antinatriuresis during sustained lower body negative pressure despite a modest decrease in blood pressure. These results thus provide interesting insights into potential benefits of AT1 receptor blockade in sodium-retaining states such as congestive heart failure.