939 resultados para Socio-technical styles of production


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present research aims to evaluate the usefulness of the application of Life Cycle Management in the agricultural sector focusing on the environmental and socio-economic aspects of decision making in the Colombian cocoa production. Such appraisal is based on the application of two methodological tools: Life Cycle Assessment, which considers environmental impacts throughout the life cycle of the cocoa production system, and Taguchi Loss Function, which measures the economic impact of a process' deviation from production targets. Results show that appropriate improvements in farming practices and supply consumption can enhance decision-making in the agricultural cocoa sector towards sustainability. In terms of agri-business purposes, such qualitative shift allows not only meeting consumer demands for environmentally friendly products, but also increasing the productivity and competitiveness of cocoa production, all of which has helped Life Cycle Management gain global acceptance. Since farmers have an important role in improving social and economic indicators at the national level, more attention should be paid to the upgrading of their cropping practices. Finally, one fundamental aspect of national cocoa production is the institutional and governmental support available for farmers in face of socio-economic or technological needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse cible l’étude d’une organisation sociotechnique pluraliste, le Réseau de centres d’excellence ArcticNet, établi depuis 2003 au sein de l’Université Laval et financé par le programme fédéral des Réseaux de centres d’excellence (RCE). Ce programme, effectif depuis 1988, est issu d’une initiative du ministère de l’Industrie Canada et des trois Conseils fédéraux de financement de la recherche scientifique (CRSNG, CRSH et IRSC). Par sa dimension interdisciplinaire et interinstitutionnelle, le RCE ArcticNet sollicite la mise en place de divers accommodements sur une thématique environnementale controversée, celle du développement de l’Arctique canadien côtier. Notre approche se concentre sur la description de ces collaborations pluralistes et l’analyse des stratégies de consensus mises en place par une organisation universitaire médiatrice. Si cette étude illustre le cas d’ArcticNet, elle questionne toutefois deux réalités d’ensemble: (1) D’un point de vue théorique, prépondérant dans cette thèse, les enjeux environnementaux et de développement durable s’inscrivent dans les nouvelles réalités de la production des connaissances portées par une coévolution entre science et société, contribuant à l’expansion des domaines de R&D ciblés; et, (2) D’un point de vue empirique illustratif, les éléments de formation et d’évolution d’un réseau sociotechnique intersectoriel et les stratégies des scientifiques dans la recherche et le développement de l’Arctique canadien côtier présentent un profil basé sur l’accommodement des parties prenantes. Cette recherche adhère au postulat épistémologique des théories des organisations sociotechniques pluralistes, plutôt qu’aux modèles théoriques de la société/économie de la connaissance. L’étude regroupe un total de 23 entrevues recueillies en 2008 et en 2010 auprès de l’administration, de membres scientifiques et de partenaires d’ArcticNet, suivant une logique de témoignage. Elle ouvre ainsi une nouvelle réflexion sur leur milieu de pratique de la science, plus particulièrement des sciences de l’environnement, vers lequel la société actuelle oriente la nouvelle production des connaissances, à travers les divers financements de la recherche et du développement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At many locations in Myanmar, ongoing changes in land use have negative environmental impacts and threaten natural ecosystems at local, regional and national scales. In particular, the watershed area of Inle Lake in eastern Myanmar is strongly affected by the environmental effects of deforestation and soil erosion caused by agricultural intensification and expansion of agricultural land, which are exacerbated by the increasing population pressure and the growing number of tourists. This thesis, therefore, focuses on land use changes in traditional farming systems and their effects on socio-economic and biophysical factors to improve our understanding of sustainable natural resource management of this wetland ecosystem. The main objectives of this research were to: (1) assess the noticeable land transformations in space and time, (2) identify the typical farming systems as well as the divergent livelihood strategies, and finally, (3) estimate soil erosion risk in the different agro-ecological zones surrounding the Inle Lake watershed area. GIS and remote sensing techniques allowed to identify the dynamic land use and land cover changes (LUCC) during the past 40 years based on historical Corona images (1968) and Landsat images (1989, 2000 and 2009). In this study, 12 land cover classes were identified and a supervised classification was used for the Landsat datasets, whereas a visual interpretation approach was conducted for the Corona images. Within the past 40 years, the main landscape transformation processes were deforestation (- 49%), urbanization (+ 203%), agricultural expansion (+ 34%) with a notably increase of floating gardens (+ 390%), land abandonment (+ 167%), and marshlands losses in wetland area (- 83%) and water bodies (- 16%). The main driving forces of LUCC appeared to be high population growth, urbanization and settlements, a lack of sustainable land use and environmental management policies, wide-spread rural poverty, an open market economy and changes in market prices and access. To identify the diverse livelihood strategies in the Inle Lake watershed area and the diversity of income generating activities, household surveys were conducted (total: 301 households) using a stratified random sampling design in three different agro-ecological zones: floating gardens (FG), lowland cultivation (LL) and upland cultivation (UP). A cluster and discriminant analysis revealed that livelihood strategies and socio-economic situations of local communities differed significantly in the different zones. For all three zones, different livelihood strategies were identified which differed mainly in the amount of on-farm and off-farm income, and the level of income diversification. The gross margin for each household from agricultural production in the floating garden, lowland and upland cultivation was US$ 2108, 892 and 619 ha-1 respectively. Among the typical farming systems in these zones, tomato (Lycopersicon esculentum L.) plantation in the floating gardens yielded the highest net benefits, but caused negative environmental impacts given the overuse of inorganic fertilizers and pesticides. The Revised Universal Soil Loss Equation (RUSLE) and spatial analysis within GIS were applied to estimate soil erosion risk in the different agricultural zones and for the main cropping systems of the study region. The results revealed that the average soil losses in year 1989, 2000 and 2009 amounted to 20, 10 and 26 t ha-1, respectively and barren land along the steep slopes had the highest soil erosion risk with 85% of the total soil losses in the study area. Yearly fluctuations were mainly caused by changes in the amount of annual precipitation and the dynamics of LUCC such as deforestation and agriculture extension with inappropriate land use and unsustainable cropping systems. Among the typical cropping systems, upland rainfed rice (Oryza sativa L.) cultivation had the highest rate of soil erosion (20 t ha-1yr-1) followed by sebesten (Cordia dichotoma) and turmeric (Curcuma longa) plantation in the UP zone. This study indicated that the hotspot region of soil erosion risk were upland mountain areas, especially in the western part of the Inle lake. Soil conservation practices are thus urgently needed to control soil erosion and lake sedimentation and to conserve the wetland ecosystem. Most farmers have not yet implemented soil conservation measures to reduce soil erosion impacts such as land degradation, sedimentation and water pollution in Inle Lake, which is partly due to the low economic development and poverty in the region. Key challenges of agriculture in the hilly landscapes can be summarized as follows: fostering the sustainable land use of farming systems for the maintenance of ecosystem services and functions while improving the social and economic well-being of the population, integrated natural resources management policies and increasing the diversification of income opportunities to reduce pressure on forest and natural resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the role of natural resource windfalls in explaining the efficiency of public expenditures. Using a rich dataset of expenditures and public good provision for 1,836 municipalities in Peru for period 2001-2010, we estimate a non-monotonic relationship between the efficiency of public good provision and the level of natural resource transfers. Local governments that were extremely favored by the boom of mineral prices were more efficient in using fiscal windfalls whereas those benefited with modest transfers were more inefficient. These results can be explained by the increase in political competition associated with the boom. However, the fact that increases in efficiency were related to reductions in public good provision casts doubts about the beneficial effects of political competition in promoting efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The notion that learning can be enhanced when a teaching approach matches a learner’s learning style has been widely accepted in classroom settings since the latter represents a predictor of student’s attitude and preferences. As such, the traditional approach of ‘one-size-fits-all’ as may be applied to teaching delivery in Educational Hypermedia Systems (EHSs) has to be changed with an approach that responds to users’ needs by exploiting their individual differences. However, establishing and implementing reliable approaches for matching the teaching delivery and modalities to learning styles still represents an innovation challenge which has to be tackled. In this paper, seventy six studies are objectively analysed for several goals. In order to reveal the value of integrating learning styles in EHSs, different perspectives in this context are discussed. Identifying the most effective learning style models as incorporated within AEHSs. Investigating the effectiveness of different approaches for modelling students’ individual learning traits is another goal of this study. Thus, the paper highlights a number of theoretical and technical issues of LS-BAEHSs to serve as a comprehensive guidance for researchers who interest in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steam reforming is the most usual method of hydrogen production due to its high production efficiency and technological maturity the use of ethanol for this purpose is an interesting option because it is a renewable and environmentally friendly fuel. The objective of this article is to present the physical-chemical, thermodynamic, and exergetic analysis of a steam reformer of ethanol, in order to produce 0.7 Nm(3)/h of hydrogen as feedstock of a 1 kW PEMFC the global reaction of ethanol is considered. Superheated ethanol reacts with steam at high temperatures producing hydrogen and carbon dioxide, depending strongly on the thermodynamic conditions of reforming, as well as on the technical features of the reformer system and catalysts. The thermodynamic analysis shows the feasibility of this reaction in temperatures about 206 degrees C. Below this temperature, the reaction trends to the reactants. The advance degree increases with temperature and decreases with pressure. Optimal temperatures range between 600 and 700 degrees C. However, when the temperature attains 700 degrees C, the reaction stability occurs, that is, the hydrogen production attains the limit. For temperatures above 700 degrees C, the heat use is very high, involving high costs of production due to the higher volume of fuel or electricity used. The optimal pressure is 1 atm., e.g., at atmospheric pressure. The exergetic analysis shows that the lower irreversibility is attained for lower pressures. However the temperature changes do not affect significantly the irreversibilities. This analysis shows that the best thermodynamic conditions for steam reforming of ethanol are the same conditions suggested in the physical-chemical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The steam reforming is one of most utilized process of hydrogen production because of its high production efficiencies and its technological maturity. The use of ethanol for this purpose is a interesting option because this is a renewable and less environmentally offensive fuel. The objective of this study is evaluate the physical-chemical, thermodynamic and environmental analyses of steam reforming of ethanol. whose objective is to produce 0.7 Nm3/h of hydrogen to be used by a PEMFC of l kW. In this physical-chemical analysis, a global reaction of ethanol was considered. That is, the superheated ethanol and steam, at high temperatures, react to produce hydrogen and carbon dioxide. Beyond it's the simplest form to study the steam reforming of ethanol to hydrogen production, it's the case where occurs the highest production of hydrogen (the product to be used by fuel cells) and carbon dioxide, to be eliminated. But this reaction isn't real and depends greatly on the thermodynamic conditions of reforming, technical features of reformer system and catalysts. Other products generally formed (but not investigated in this study) are methane, carbon monoxide, among others. It was observed that the products is commonly produced in the moment when the reaction attains temperatures about 206°C (below this temperature, the reaction trend to the reaetants, that is, from hydrogen and carbon dioxide to steam and ethanol) and the advance degree of this reaction increases when the temperature of reaction also increases and when its pressure decreases. It's suggested reactions at about 600°C or higher. However, when the temperature attains 700°C, the stability of this reaction is occurred, that is, the production of reaction productions attains to the limit, that is the highest possible production. In temperatures above 700°C, the use of energy is very high for produce more products, having higher costs of production that the suggested temperature. The indicated pressure is 1 atm., a value that allows a desirable economy of energy that would also be used for pressurization or depressurization of steam reformer. In exergetic analysis, it's seem that the lower irreversibililies occur when the pressure of reactions are lower. However, the temperature changes don't affect significantly the irreversibilites. Utilizing the obtained results from this analysis, it was concluded that the best thermodynamic conditions for steam reforming of ethanol is the same conditions suggested in the physical-chemical analysis. The exergetic and first law efficiencies are high on the thermodynamie conditions studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An expressive amount of produced hydrogen is generated by customers in-situ such as petrochemical, fertilizer and sugarcane industries. However, the most utilized feedstock is natural gas, a non-renewable and fossil fuel. The introduction of biohydrogen production process associated in a sugarcane industry is an alternative to diminish emissions and contribute to create a CO2 cycle, where the plants capture this gas by photosynthesis process and produces sucrose for ethanol production. The cost of production of ethanol has dramatically decreased (from about US$ 700/m3 in 1970s to US$ 200/m3 today), becoming this a good option at near term, inclusively for its utilization by customers localized in main regions (localized especially in regions such as Southeastern Brazil) Also in near future, it will possible the utilization of fuel cells as form of distributed generation. Its utilization could occur specially in peak hours, diminishing the cost of investments in newer transmission systems. A technical and economic analysis of steam reformer of ethanol to hydrogen production associated with sugarcane industry was recently performed. This technique will also allow the use of ethanol when its price is relatively low. This study was based on a previous R&D study (sponsored by CEMIG - State of Minas Gerais Electricity Company) where thermodynamic and economic analyses were developed, based in the development of two ethanol steam reformers prototypes.x In this study an analysis was performed considering the use of bagasse as source of heat in the steam reforming process. Its use could to diminish the costs of hydrogen production, especially at large scale, obtaining cost-competitive production and permitting that sugarcane industry produces hydrogen in large scale beyond ethylic alcohol, anhydrous alcohol (or ethanol) and sugar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has as objective to demonstrate technical and economic viability of hydrogen production utilizing glycerol. The volume of this substance, which was initially produced by synthetic ways (from oil-derived products), has increased dramatically due mainly to biodiesel production through transesterification process which has glycerol as main residue. The surplus amount of glycerol has been generally utilized to feed poultry or as fuel in boilers, beyond other applications such as production of soaps, chemical products for food industry, explosives, and others. The difficulty to allocate this additional amount of glycerol has become it in an enormous environment problem, in contrary to the objective of biodiesel chain, which is to diminish environmental impact substituting oil and its derivatives, which release more emissions than biofuels, do not contribute to CO2-cycle and are not renewable sources. Beyond to utilize glycerol in combustion processes, this material could be utilized for hydrogen production. However, a small quantity of works (theoretical and experimental) and reports concerning this theme could be encountered. Firstly, the produced glycerol must be purified since non-reacted amounts of materials, inclusively catalysts, contribute to deactivate catalysts utilized in hydrogen production processes. The volume of non-reacted reactants and non-utilized catalysts during transesterification process could be reutilized. Various technologies of thermochemical generation of hydrogen that utilizes glycerol (and other fuels) were evaluated and the greatest performances and their conditions are encountered as soon as the most efficient technology of hydrogen production. Firstly, a physicochemical analysis must be performed. This step has as objective to evaluate the necessary amount of reactants to produce a determined volume of hydrogen and determine thermodynamic conditions (such as temperature and pressure) where the major performances of hydrogen production could be encountered. The calculations are based on the process where advance degrees are found and hence, fractions of products (especially hydrogen, however, CO2, CO, CH4 and solid carbon could be also encountered) are calculated. To produce 1 Nm3/h of gaseous hydrogen (necessary for a PEMFC - Proton Exchange Membrane Fuel Cell - containing an electric efficiency of about 40%, to generate 1 kWh), 0,558 kg/h of glycerol is necessary in global steam reforming, 0,978 kg/h of glycerol in partial oxidation and cracking processes, and 0,782 kg/h of glycerol in autothermal reforming process. The dry reforming process could not be performed to produce hydrogen utilizing glycerol, in contrary to the utilization of methane, ethanol, and other hydrocarbons. In this study, steam reforming process was preferred due mainly to higher efficiencies of production and the need of minor amount of glycerol as cited above. In the global steam reforming of glycerine, for one mole of glycerol, three moles of water are necessary to produce three moles of CO2 and seven moles of H2. The response reactions process was utilized to predict steam reforming process more accurately. In this mean, the production of solid carbon, CO, and CH4, beyond CO2 and hydrogen was predicted. However, traces of acetaldehyde (C2H2), ethylene (C2H4), ethylene glycol, acetone, and others were encountered in some experimental studies. The rates of determined products obviously depend on the adopted catalysts (and its physical and chemical properties) and thermodynamic conditions of hydrogen production. Eight reactions of steam reforming and cracking were predicted considering only the determined products. In the case of steam reforming at 600°C, the advance degree of this reactor could attain its maximum value, i.e., overall volume of reactants could be obtained whether this reaction is maintained at 1 atm. As soon as temperature of this reaction increases the advance degree also increase, in contrary to the pressure, where advance degree decrease as soon as pressure increase. The fact of temperature of reforming is relatively small, lower costs of installation could be attained, especially cheaper thermocouples and smaller amount of thermo insulators and materials for its assembling. Utilizing the response reactions process in steam reforming, the predicted volumes of products, for the production of 1 Nm3/h of H2 and thermodynamic conditions as cited previously, were 0,264 kg/h of CO (13% of molar fraction of reaction products), 0,038 kg/h of CH4 (3% of molar fraction), 0,028 kg/h of C (3% of molar fraction), and 0,623 kg/h of CO2 (20% of molar fraction). Through process of water-gas shift reactions (WGSR) an additional amount of hydrogen could be produced utilizing mainly the volumes of produced CO and CH4. The overall results (steam reforming plus WGSR) could be similar to global steam reforming. An attention must to be taking into account due to the possibility to produce an additional amount of CH4 (through methanation process) and solid carbon (through Boudouard process). The production of solid carbon must to be avoided because this reactant diminishes (filling the pores) and even deactivate active area of catalysts. To avoid solid carbon production, an additional amount of water is suggested. This method could be also utilized to diminish the volume of CO (through WGSR process) since this product is prejudicial for the activity of low temperature fuel cells (such as PEMFC). In some works, more three or even six moles of water are suggested. A net energy balance of studied hydrogen production processes (at 1 atm only) was developed. In this balance, low heat value of reactant and products and utilized energy for the process (heat supply) were cited. In the case of steam reforming utilizing response reactions, global steam reforming, and cracking processes, the maximum net energy was detected at 700°C. Partial oxidation and autothermal reforming obtained negative net energy in all cited temperatures despite to be exothermic reactions. For global steam reforming, the major value was 114 kJ/h. In the case of steam reforming, the highest value of net energy was detected in this temperature (-170 kJ/h). The major values were detected in the cracking process (up to 2586 kJ/h). The exergetic analysis has as objective, associated with physicochemical analysis, to determine conditions where reactions could be performed at higher efficiencies with lower losses. This study was performed through calculations of exergetic and rational efficiencies, and irreversibilities. In this analysis, as in the previously performed physicochemical analysis, conditions such as temperature of 600°C and pressure of 1 atm for global steam reforming process were suggested due to lower irreversibility and higher efficiencies. Subsequently, higher irreversibilities and lower efficiencies were detected in autothermal reforming, partial oxidation and cracking process. Comparing global reaction of steam reforming with more-accurate steam reforming, it was verified that efficiencies were diminished and irreversibilities were increased. These results could be altered with introduction of WGSR process. An economic analysis could be performed to evaluate the cost of generated hydrogen and determine means to diminish the costs. This analysis suggests an annual period of operation between 5000-7000 hours, interest rates of up to 20% per annum (considering Brazilian conditions), and pay-back of up to 20 years. Another considerations must to be take into account such as tariffs of utilized glycerol and electricity (to be utilized as heat source and (or) for own process as pumps, lamps, valves, and other devices), installation (estimated as US$ 15.000 for a plant of 1 Nm3/h) and maintenance cost. The adoption of emission trading schemes such as carbon credits could be performed since this is a process with potential of mitigates environment impact. Not considering credit carbons, the minor cost of calculated H2 was 0,16288 US$/kWh if glycerol is also utilized as heat sources and 0,17677 US$/kWh if electricity is utilized as heat sources. The range of considered tariff of glycerol was 0-0,1 US$/kWh (taking as basis LHV of H2) and the tariff of electricity is US$ 0,0867 US$/kWh, with demand cost of 12,49 US$/kW. The costs of electricity were obtained by Companhia Bandeirante, localized in São Paulo State. The differences among costs of hydrogen production utilizing glycerol and electricity as heat source was in a range between 0,3-5,8%. This technology in this moment is not mature. However, it allows the employment generation with the additional utilization of glycerol, especially with plants associated with biodiesel plants. The produced hydrogen and electricity could be utilized in own process, increasing its final performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le sperimentazioni riguardanti la produzione di biodiesel da alghe sono state condotte solo in laboratorio o in impianti pilota e il processo produttivo non è ancora stato sviluppato su scala industriale. L’obiettivo di questo lavoro di tesi è stato quello di valutare la potenziale sostenibilità ambientale ed energetica della produzione industriale di biodiesel da microalghe nella realtà danese ipotizzando la coltivazione in fotobioreattori. La tesi ha analizzato le diverse tecnologie attualmente in sperimentazione cercando di metterne in evidenza punti di forza e punti di debolezza. La metodologia applicata in questa tesi per valutare la sostenibilità ambientale ed energetica dei processi analizzati è LCA strumento che permette di effettuare la valutazione sull’intero ciclo di vita di un prodotto o di un processo. L’unità funzionale scelta è 1 MJ di biodiesel. I confini del sistema analizzato comprendono: coltivazione, raccolta, essicazione, estrazione dell’olio, transesterificazione, digestione anaerobica della biomassa residuale e uso del glicerolo ottenuto come sottoprodotto della transesterificazione. Diverse categorie d’impatto sono state analizzate. In questo caso studio, sono stati ipotizzati 24 diversi scenari differenziati in base alle modalità di coltivazione, di raccolta della biomassa, di estrazione dell’olio algale. 1. la produzione di biodiesel da microalghe coltivate in fotobioreattori non appare ancora conveniente né dal punto di vista energetico né da quello ambientale. 2. l’uso di CO2 di scarto e di acque reflue per la coltivazione, fra l’altro non ancora tecnicamente realizzabili, migliorerebbero le prestazioni energetiche ed ambientali del biodiesel da microalghe 3. la valorizzazione di prodotti secondari svolge un ruolo importante nel processo e nel suo sviluppo su larga scala Si conclude ricordando che il progetto di tesi è stato svolto in collaborazione con la Danish Technical University of Denmark (DTU) svolgendo presso tale università un periodo di tirocinio per tesi di sei mesi

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peru is the one of the most important exporters of asparagus in the world. Its export volume of fresh asparagus is ranked number one, and its export volume of preserved asparagus number two, globally. The objective of this paper is to provide an overview of the recent trends in asparagus production and exports around the world and to analyze factors in the development of the Peruvian asparagus industry. The production of asparagus has spread geographically. The center of its production used to be in the principal consuming countries, such as France, Germany and the United States. Afterward, it spread to neighboring countries such as Spain and Mexico where production factors such as climate and labor costs are favorable. After the rise and fall of Taiwan as a major preserved white asparagus exporter, China and Peru replaced its position. Finally, in recent years, Peru expanded its fresh green asparagus exports to the U.S. market by taking advantage of the increasing demand for fresh vegetables and supplying produce in seasons when neither U.S. nor Mexican producers can harvest. In addition to the changing factors in the international market, there are several factors in the development of the industry: high yields of produce due to favorable climatic and soil conditions; the introduction of the drip irrigation system, which enabled desert cultivation; the integration of production and exports, which is indispensable for fresh produce exports; and the collective efforts of the industry with help from the public sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper investigates the possibility of constructing a new measurement for analysing international fragmentation of the production process. It asserts that the current usage of relevant data, whether the trade shares of parts and components or the index of Vertical Specialisation, is quite unsatisfactory for measuring the phenomenon, since they critically lack the overall perspective of the entire structure of production chains.  The new measurement is formulated such that it captures every aspect of the vertical sequence of production linkages. It is based on the input-output model of Average Propagation Lengths, recently developed by Eric Dietzenbacher and others, which show the average number of production stages that are passed through for an exogenous change in one industry to affect another. By applying this model to the data of the Asian International Input-Output Tables, the index is able to measure the international dimension of production sharing and division of labour in East Asia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Asia-Pacific Region has enjoyed remarkable economic growth in the last three decades. This rapid economic growth can be partially attributed to the global spread of production networks, which has brought about major changes in spatial interdependence among economies within the region. By applying an Input-Output based spatial decomposition technique to the Asian International Input-Output Tables for 1985 and 2000, this paper not only analyzes the intrinsic mechanism of spatial economic interdependence, but also shows how value added, employment and CO2 emissions induced are distributed within the international production networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the performance of smallholders in a nucleus estate and smallholder (NES) scheme in oil palm production schemein West Sumatra by measuring their technical efficiency using a stochastic frontier production function. Our results indicate a mean technical efficiency of 66%, which is below what we would have expected given the uniformity of the climate, soils and plantation construction among the sample farmers. The use of progressive farmers as a means of disseminating extension advice does not appear to have been successful, and more rigorous farmer selection procedures need to be put in place for similar schemes and for general agricultural extension in future. No clear relationship was established between technical efficiency and the use of female labour, suggesting there is no need to target extension services specifically at female labourers in the household. Finally, education was found to have an unexpectedly negative impact on technical efficiency, indicating that farmers with primary education may be more important than those with secondary and tertiary education as targets of development schemes and extension programs entailing non-formal education. (C) 2003 Elsevier Ltd. All rights reserved.