967 resultados para Shear bond strength test
Resumo:
PURPOSE To determine the impact of long-term storage on adhesion between titanium and zirconia using resin cements. MATERIALS AND METHODS Titanium grade 4 blocks were adhesively fixed onto zirconia disks with four resin cements: Panavia F 2.0 (Kuraray Europe), GC G-Cem (GC Europe), RelyX Unicem (3M ESPE), and SmartCem 2 (Dentsply DeguDent). Shear bond strength was determined after storage in a water bath for 24 h, 16, 90, and 150 days at 37°C, and after 6000 cycles between 5°C and 55°C. Fracture behavior was evaluated using scanning electron microscopy. RESULTS After storage for at least 90 days and after thermocycling, GC G-Cem (16.9 MPa and 15.1 MPa, respectively) and RelyX Unicem (10.8 MPa and 15.7 MPa, respectively) achieved higher shear bond strength compared to SmartCem 2 (7.1 MPa and 4.0 MPa, respectively) and Panavia F2 (4.1 MPa and 7.4 MPa, respectively). At day 150, GC G-Cem and RelyX Unicem caused exclusively mixed fractures. SmartCem 2 and Panavia F2 showed adhesive fractures in one-third of the cases; all other fractures were of mixed type. After 24 h (GC G-Cem: 26.0, RelyX Unicem: 20.5 MPa, SmartCem 2: 16.1 MPa, Panavia F2: 23.6 MPa) and 16 days (GC G-Cem: 12.8, RelyX Unicem: 14.2 MPa, SmartCem 2: 9.8 MPa, Panavia F2: 14.7 MPa) of storage, shear bond strength was similar among the four cements. CONCLUSION Long-term storage and thermocycling differentially affects the bonding of resin cement between titanium and zirconia.
Resumo:
Objectives: To investigate substance loss and bond strength capacity of sclerotic, non-carious cervical dentin after airborne-particle abrasion or diamond bur preparation. Methods: Fifteen non-sclerotic dentin specimens were made from crowns of extracted human incisors of which the labial surfaces had been ground with silicon carbide papers (non-sclerotic control; Group 1). Forty-five sclerotic dentin specimens (n=15/group) were made from the labial, non-carious cervical root part of extracted human incisors and underwent either no pre-treatment (sclerotic control; Group 2), pre-treatment with airborne-particle abrasion (CoJet Prep [3M ESPE] and 50 µm aluminium oxide; Group 3), or with diamond bur preparation (40 µm grit size; Group 4). Substance loss after pre-treatment was measured in Groups 3 and 4. Subsequently, Scotchbond Universal (3M ESPE) and resin composite (CeramX [DENTSPLY DeTrey]) were applied on the treated dentin surfaces. The specimens were stored at 37°C and 100% humidity for 24 h. After storage, shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Wilcoxon rank sum tests. Results: Substance loss (medians) was 19 µm in Group 3 and 113 µm in Group 4. SBS-values (MPa; medians) in Group 2 (9.24) were significantly lower than in Group 1 (13.15; p=0.0069), Group 3 (13.05; p=0.01), and Group 4 (13.02; p=0.0142). There were no significant differences in SBS between Groups 1, 3, and 4 (p≥0.8063). Conclusion: Airborne-particle abrasion and diamond bur preparation restored bond strength of Scotchbond Universal to sclerotic dentin to the level of non-sclerotic dentin, with airborne-particle abrasion being less invasive than diamond bur preparation.
Resumo:
Este estudo avaliou a colagem de braquetes linguais nas faces linguais de pré-molares superiores com diferentes espessuras de PADs, confeccionados com a resina fotopolimerizável Transbond XT nas espessuras de 1,0 mm e 2,0 mm e comparando-os com a menor espessura possível. Foi utilizado o adesivo Sondhi Rapid Set para a colagem indireta. Avaliou-se a força de resistência sob cisalhamento cinco minutos após a colagem em uma máquina de ensaios mecânicos Kratos, com velocidade de cruzeta de 1,0 mm/min. A força média da resistência da colagem sob cisalhamento para o Grupo I foi de 9,69 MPa (DP 4,02 MPa), para o Grupo II foi de 6,15 MPa (DP 2,69 MPa) e para o Grupo III foi de 5,73 MPa (DP 1,62 MPa). O Grupo I, com menor espessura do PAD, apresentou força de resistência da colagem sob cisalhamento significativamente maior do que os Grupos II e III (PADs com 1,0 e 2,0 mm respectivamente). Estes por sua vez, não apresentaram diferença estatisticamente significante ao nível de p<0,05. O índice 1 de Adesivo Remanescente predominou nos Grupos I e II, caracterizando um maior número de fraturas do tipo adesiva. No Grupo 3 predominou o Índice 2, com fraturas do tipo coesiva.(AU)
Resumo:
Este estudo avaliou a colagem de braquetes linguais nas faces linguais de pré-molares superiores com diferentes espessuras de PADs, confeccionados com a resina fotopolimerizável Transbond XT nas espessuras de 1,0 mm e 2,0 mm e comparando-os com a menor espessura possível. Foi utilizado o adesivo Sondhi Rapid Set para a colagem indireta. Avaliou-se a força de resistência sob cisalhamento cinco minutos após a colagem em uma máquina de ensaios mecânicos Kratos, com velocidade de cruzeta de 1,0 mm/min. A força média da resistência da colagem sob cisalhamento para o Grupo I foi de 9,69 MPa (DP 4,02 MPa), para o Grupo II foi de 6,15 MPa (DP 2,69 MPa) e para o Grupo III foi de 5,73 MPa (DP 1,62 MPa). O Grupo I, com menor espessura do PAD, apresentou força de resistência da colagem sob cisalhamento significativamente maior do que os Grupos II e III (PADs com 1,0 e 2,0 mm respectivamente). Estes por sua vez, não apresentaram diferença estatisticamente significante ao nível de p<0,05. O índice 1 de Adesivo Remanescente predominou nos Grupos I e II, caracterizando um maior número de fraturas do tipo adesiva. No Grupo 3 predominou o Índice 2, com fraturas do tipo coesiva.(AU)
Resumo:
Lesões dentais por erosão têm sido cada vez mais presentes na prática clínica. A restauração direta com resina composta é uma das opções de tratamento para lesões severas, em que há comprometimento estético/funcional. Com o aprimoramento da tecnologia, a utilização do laser para pré-tratamento da superfície dentinária, antes do condicionamento ácido, tem sido considerada como método alternativo para melhorar a adesão das resinas compostas às superfícies erodidas. Assim, o objetivo deste estudo in vitro foi avaliar a influência da irradiação com laser de Er:YAG (2,94 ?m), de pulso super-curto, na adesão da resina composta à superfície dentinária erodida. Quarenta e seis discos de dentina foram obtidos a partir de 46 dentes terceiros molares humanos. A dentina oclusal planificada de 40 molares humanos teve metade de sua face protegida com fita UPVC (dentina hígida), enquanto na outra metade foi produzida uma lesão de erosão através da ciclagem em ácido cítrico (0,05 M, pH 2,3, 10 minutos, 6x/dia) e solução supersaturada (pH 7,0, 60 minutos entre os ataques ácidos). Metade das amostras foi irradiada com o laser de Er:YAG (50 ?s, 2 Hz, 80 mJ, 12,6 J/cm2) e a outra não (grupo controle). Em cada grupo de tratamento (laser ou controle) (n=10), um sistema adesivo autocondicionante foi utilizado e, então, confeccionados 2 cilindros de resina composta, tanto do lado erodido como no hígido (total de 4 cilindros), os quais foram submetidos à avaliação da Resistência de União através do ensaio de microcisalhamento (1 mm/min), após armazenamento em saliva artificial por 24 h. A análise do padrão de fratura foi realizada em microscópio óptico (40x). Por meio da Microscopia Eletrônica de Varredura (MEV), a morfologia das superfícies dentinárias hígida e submetida ao desafio erosivo, antes e após o tratamento com laser de Er:YAG (n=3), foi avaliada. Os valores obtidos de resistência de união (MPa) foram submetidos ao teste ANOVA e de comparações múltiplas de Tukey (p<0,05) e as análises das eletromicrografias foram feitas de forma descritiva. A análise morfológica da superfície mostrou alterações significativas na dentina hígida irradiada e na submetida à ciclagem erosiva, irradiada ou não. Quanto à resistência de união, houve diferença entre os 4 substratos analisados, sendo: dentina hígida irradiada (12,77±5,09 A), dentina hígida não irradiada (9,76±3,39 B), dentina erodida irradiada (7,62±3,39 C) e dentina erodida não irradiada (5,12±1,72 D). Houve predominância de padrão de fratura do tipo adesiva. Com base nos resultados e nos parâmetros de irradiação utilizados neste estudo, pode-se concluir que a erosão reduz a adesão em dentina e que o tratamento da superfície dentinária com laser de Er:YAG de largura de pulso super curta aumenta a adesão no substrato erodido ou hígido.
Resumo:
Este estudo avaliou a colagem de braquetes linguais nas faces linguais de pré-molares superiores com diferentes espessuras de PADs, confeccionados com a resina fotopolimerizável Transbond XT nas espessuras de 1,0 mm e 2,0 mm e comparando-os com a menor espessura possível. Foi utilizado o adesivo Sondhi Rapid Set para a colagem indireta. Avaliou-se a força de resistência sob cisalhamento cinco minutos após a colagem em uma máquina de ensaios mecânicos Kratos, com velocidade de cruzeta de 1,0 mm/min. A força média da resistência da colagem sob cisalhamento para o Grupo I foi de 9,69 MPa (DP 4,02 MPa), para o Grupo II foi de 6,15 MPa (DP 2,69 MPa) e para o Grupo III foi de 5,73 MPa (DP 1,62 MPa). O Grupo I, com menor espessura do PAD, apresentou força de resistência da colagem sob cisalhamento significativamente maior do que os Grupos II e III (PADs com 1,0 e 2,0 mm respectivamente). Estes por sua vez, não apresentaram diferença estatisticamente significante ao nível de p<0,05. O índice 1 de Adesivo Remanescente predominou nos Grupos I e II, caracterizando um maior número de fraturas do tipo adesiva. No Grupo 3 predominou o Índice 2, com fraturas do tipo coesiva.(AU)
Resumo:
Aims: This thesis aimed to investigate the influence of different collagen cross-linkers, as separate primers or contained within desensitizing agents, on the longevity of dental restorations and on the dentinal enzymatic activity immediately, or after aging in vitro. Methods: A series of studies was conducted using several different cross-linking molecules and several adhesive systems. Four studies investigated the longevity of the hybrid layer by means of microtensile bond strength test, and the enzymatic activity using gelatin and in situ zymography, immediately or after 1 year of aging in the artificial saliva. The first study tested samples bonded with or without a cross-linking agent, that were previously aged for 5 years. The degradation of the hybrid layer was observed using transmission electron microscopy, the enzymatic activity in the hybrid layer using in situ zymography. Raman spectroscopy was used to investigate whether the active substance was still within the hybrid layer after 5 years. Results: The results of the studies showed that collagen cross-linkers were efficient in preserving bond strength after aging in vitro when used as separate primers on demineralized or partially demineralized dentin. In the cases when the cross-linker was utilized on mineralized dentin, bond strength results were higher than in the control groups immediately and after aging, however, no difference in enzymatic activity was detected after aging. Conclusions: The tested cross-linker molecules used as separate primers in etch-and-rinse and self-etch adhesives seem to be clinically applicable, since the procedure is not overly time-consuming and seems to preserve the hybrid layer over time. As for the cross-linkers contained in the desensitizing agent, when utilized before the adhesive procedures, it has shown to increase the bond strength of self-etch adhesives, but further studies are needed to better understand its effect on the enzymatic activity and crosslinking effects on mineralized dentin.
Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites
Resumo:
Aim of the investigation was to assess the effect of different surface treatments on the bond strength of veneering ceramics to zirconia. In a shear test, the influences of polishing, sandblasting, and silica-coating of the zirconia surface on bonding were assessed with five different veneering ceramics. In addition the effect of liner application was examined. With one veneering ceramic, the impact of regeneration firing of zirconia was also evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Scheffé's test. Failure in every case occurred in the veneering ceramic adjacent to the interface with a thin layer of ceramic remaining on the zirconia surface, indicating that bond strength was higher than the cohesive strength of the veneering ceramic. Shear strength ranged from 23.5 +/- 3.4 MPa to 33.0 +/- 6.8 MPa without explicit correlation to the respective surface treatment. Regeneration firing significantly decreased the shear strength of both polished and sandblasted surfaces. Findings of this study revealed that bonding between veneering ceramics and zirconia might be based on chemical bonds. On this note, sandblasting was not a necessary surface pretreatment to enhance bond strength and that regeneration firing was not recommended.
Resumo:
Purpose: To evaluate the effect of the opaque layer firing temperature and mechanical and thermal cycling on the flexural strength of a ceramic fused to commercial cobalt-chromium alloy (Co-Cr). The hypotheses were that higher opaque layer temperatures increase the metal/ceramic bond strength and that aging reduces the bond strength. Materials and Methods: Metallic frameworks (25 x 3 x 0.5 mm(3); ISO 9693) (N = 60) were cast in Co-Cr and airborne-particle abraded (Al(2)O(3): 150 mu m) at the central area of the frameworks (8 x 3 mm(2)) and divided into three groups (N = 20), according to the opaque layer firing temperature: Gr1 (control)-900 degrees C; Gr2-950 degrees C; Gr3-1000 degrees C. The opaque ceramic (Opaque, Vita Zahnfabrick, Bad Sackingen, Germany) was applied, and the glass ceramic (Vita Omega 900, Vita Zahnfabrick) was fired onto it (thickness: 1 mm). While half the specimens from each group were randomly tested without aging (water storage: 37 degrees C/24 hours), the other half were mechanically loaded (20,000 cycles; 50 N load; distilled water at 37 degrees C) and thermocycled (3000 cycles; 5 degrees C to 55 degrees C, dwell time: 30 seconds). After the flexural strength test, failure types were noted. The data were analyzed using 2-way ANOVA and Tukey`s test (alpha = 0.05). Results: Gr2 (19.41 +/- 5.5 N) and Gr3 (20.6 +/- 5 N) presented higher values than Gr1 (13.3 +/- 1.6 N) (p = 0.001). Mechanical and thermal cycling did not significantly influence the mean flexural strength values (p > 0.05). Increasing the opaque layer firing temperature improved the flexural bond strength values (p < 0.05). The hypotheses were partially accepted. Conclusion: Increasing of the opaque layer firing temperature improved the flexural bond strength between ceramic fused to Co-Cr alloy.
Resumo:
Data collection to determine the rate of bond strength development between concrete overlays and existing pavements and the evaluation of nondestructive testing methods for determining concrete strength were the objectives of this study. Maturity meters and pulse velocity meters were employed to determine the rate of flexural strength gain and determine the time for opening of newly constructed pavements to traffic. Maturity measurements appear to provide a less destructive method of testing. Pulse velocity measurements do require care in the preparation of the test wells and operator care in testing. Both devices functioned well under adverse weather and construction conditions and can reduce construction traffic delay decisions. Deflection testing and strain gaging indicate differences in the reaction of the overlay and existing pavement under grouting versus nongrouted sections. Grouting did enhance the rate of bond development with Type I11 cement out performing the Type I1 grout section. Type I11 and Type I1 cement grouts enhanced resistance to cracking in uniformly supported pavements where joints are prepared prior to overlays achieving target flexural strengths. Torsional and direct shear testing provide additional ways of measuring bond development at different cure times. Detailed data analysis will be utilized by TRANSTEC, Inc. to develop a bonded overlay construction guidelines report.
Resumo:
The rehabilitation of concrete structures, especially concrete bridge decks, is a major challenge for transportation agencies in the United States. Often, the most appropriate strategy to preserve or rehabilitate these structures is to provide some form of a protective coating or barrier. These surface treatments have typically been some form of polymer, asphalt, or low-permeability concrete, but the application of UHPC has shown promise for this application mainly due to its negligible permeability, but also as a result of its excellent mechanical properties, self-consolidating nature, rapid gain strength, and minimal creep and shrinkage characteristics. However, for widespread acceptance, durability and performance of the composite system must be fully understood, specifically the bond between UHPC and NSC often used in bridge decks. It is essential that the bond offers enough strength to resist the stress due to mechanical loading or thermal effects, while also maintaining an extended service-life performance. This report attempts to assess the bond strength between UHPC and NSC under different loading configurations. Different variables, such as roughness degree of the concrete substrates, age of bond, exposure to freeze-thaw cycles and wetting conditions of the concrete substrate, were included in this study. The combination of splitting tensile test with 0, 300, 600 and 900 freeze-thaw cycles was carried out to assess the bond performance under severe ambient conditions. The slant-shear test was utilized with different interface angles to provide a wide understanding of the bond performance under different combinations of compression and shear stresses. The pull-off test is the most accepted method to evaluate the bond strength in the field. This test which studies the direct tensile strength of the bond, the most severe loading condition, was used to provide data that can be correlated with the other tests that only can be used in the laboratory. The experimental program showed that the bond performance between UHPC and NSC is successful, as the strength regardless the different degree of roughness of the concrete substrate, the age of the composite specimens, the exposure to freeze-thaw cycles and the different loading configurations, is greater than that of concrete substrate and largely satisfies with ACI 546.3R-06.
Resumo:
P>Aim To assess the push-out strength of Epiphany SE, Epiphany and Hybrid Root SEAL to the dentine walls of root canals. Methodology Sixty roots of canines were prepared and distributed to six groups (n = 10) according to the filling material: GI - Epiphany SE, GII - Epiphany primer and sealer, GIII - Epiphany primer, sealer and resinous solvent, GIV - Clearfil DC Bond and Epiphany sealer, GV - Clearfil, Epiphany sealer and solvent and GVI - Hybrid Root SEAL. Resilon cones were used in all groups. Roots were sectioned transversally to obtain three slices from each third. One slice was subjected to the push-out test (MPa), and results were analysed by anova and Tukey`s test (P < 0.05). The other two slices were prepared for scanning electron microscopy (SEM). Failure mode was also analysed. Results A statistically significant difference (P < 0.05) occurred between Hybrid Root SEAL (5.27 +/- 2.07) and the other materials, GI (0.40 +/- 0.23), GII (0.78 +/- 0.45), GIII (0.57 +/- 0.28), GIV (0.40 +/- 0.24) and GV (0.50 +/- 0.41), which did not differ significantly from each other (P > 0.05). Adhesive failures predominated in groups I, II, IV and V, whilst mixed and cohesive failures were the most frequent in groups III and VI, respectively. There were gaps in the adhesive interface of GI and GII, continuity areas of the filling material with dentine in GIV and GV and good adaptation of the interface of GVI. Conclusion Hybrid Root SEAL had greater push-out strength to root canal dentine than Epiphany SE and Epiphany. The use of primer, solvent and adhesive system did not influence the adhesion of Epiphany.
Resumo:
This research was initiated in 1991 as a part of a whitetopping project to study the effectiveness of various techniques to enhance bond strength between a new portland cement concrete (PCC) overlay and an existing asphalt cement concrete (ACC) pavement surface. A 1,676 m (5,500 ft) section of county road R16 in Dallas County was divided into 12 test sections. The various techniques used to enhance bond were power brooming, power brooming with air blast, milling, cement and water grout, and emulsion tack coat. Also, two sections were planed to a uniform cross-section, two pavement thicknesses were placed, and two different concrete mix proportions were used. Bond strength was perceived to be the key to determining an appropriate design procedure for whitetopping. If adequate bond is achieved, a bonded PCC overlay technique can be used for design. Otherwise, an unbonded overlay procedure may be more appropriate. Conclusions are as follows: (1) Bond Strength Differences - Milling increased bond strength versus no milling. Tack coat showed increased bond strength versus no tack coat. Planing, Air Blast and Grouting did not provide noticeable improvements in bond strength; nor did different PCC types or thicknesses affect bond strength significantly. (2) Structure - Structural measurements correlated strongly with the wide variation in pavement thicknesses. They did not provide enough information to determine the strength of bonding or the level of support being provided by the ACC layer. Longitudinal cracking correlated with PCC thicknesses and with planing. (3) Bond Over Time - The bond between PCC and ACC layers is degrading over time in the outside wheel path in all of the sections except tack coat (section 12). The bond strength in the section with tack coat was lower than the others, but remained relatively steady.
Resumo:
This report is a supplement to one issued in late summer 1986 which covered construction on U.S. 71, in Buena Vista County Iowa. The work involved rehabilitation of an older 20 feet wide pavement by placing a four inch thick bonded concrete overlay monolithically with two feet of widening on each side. The work was performed on one lane at a time while construction traffic and limited public traffic used the adjacent traffic lane. When work on the first lane was complete traffic was moved onto it and rehabilitation was completed on the second lane. This report covers the condition of the rehabilitated roadway in May 1987 after the first winter. The condition is described by visual observations, core conditions, and various test results including core compressive strength, direct shear tests on cores for bond strength, profilometer results and delamtect test results.
Bond Contribution to Whitetopping Performance on Low Volume Roads, Construction Report, HR-341, 1993
Resumo:
This research was initiated in 1991 as a part of a whitetopping project to study the effectiveness of various techniques to enhance bond strength between a new Portland cement concrete (PCC) overlay and an existing asphalt cement concrete (ACC) pavement surface. A 1,676 m (5,500 ft) section of county road R16 in Dallas County, Iowa was divided into 12 test sections. The various techniques used to enhance bond were power brooming, power brooming with air blast, milling, cement and water grout, and emulsion tack coat. As a part of these bonding techniques, two pavement thicknesses were placed; two different concrete proportions were used; and two sections were planed to a uniform cross-slope.