953 resultados para Serranid Fishes
Resumo:
The constancy of phenotypic variation and covariation is an assumption that underlies most recent investigations of past selective regimes and attempts to predict future responses to selection. Few studies have tested this assumption of constancy despite good reasons to expect that the pattern of phenotypic variation and covariation may vary in space and time. We compared phenotypic variance-covariance matrices (P) estimated for Populations of six species of distantly related coral reef fishes sampled at two locations on Australia's Great Barrier Reef separated by more than 1000 km. The intraspecific similarity between these matrices was estimated using two methods: matrix correlation and common principal component analysis. Although there was no evidence of equality between pairs of P, both statistical approaches indicated a high degree of similarity in morphology between the two populations for each species. In general, the hierarchical decomposition of the variance-covariance structure of these populations indicated that all principal components of phenotypic variance-covariance were shared but that they differed in the degree of variation associated with each of these components. The consistency of this pattern is remarkable given the diversity of morphologies and life histories encompassed by these species. Although some phenotypic instability was indicated, these results were consistent with a generally conserved pattern of multivariate selection between populations.
Resumo:
Fishes, the most abundant and diverse group among all vertebrates, exploit the largest number of communication channels. These two volumes explore how fishes use hearing and vision, as well as the vibrational, electric and chemical modalities in their interactions with one another.
Resumo:
We used a one-dimensional, spatially explicit model to simulate the community of small fishes in the freshwater wetlands of southern Florida, USA. The seasonality of rainfall in these wetlands causes annual fluctuations in the amount of flooded area. We modeled fish populations that differed from each other only in efficiency of resource utilization and dispersal ability. The simulations showed that these trade-offs, along with the spatial and temporal variability of the environment, allow coexistence of several species competing exploitatively for a common resource type. This mechanism, while sharing some characteristics with other mechanisms proposed for coexistence of competing species, is novel in detail. Simulated fish densities resembled patterns observed in Everglades empirical data. Cells with hydroperiods less than 6 months accumulated negligible fish biomass. One unique model result was that, when multiple species coexisted, it was possible for one of the coexisting species to have both lower local resource utilization efficiency and lower dispersal ability than one of the other species. This counterintuitive result is a consequence of stronger effects of other competitors on the superior species.
Resumo:
Refuge habitats increase survival rate and recovery time of populations experiencing environmental disturbance, but limits on the ability of refuges to buffer communities are poorly understood. We hypothesized that importance of refuges in preventing population declines and alteration in community structure has a non-linear relationship with severity of disturbance. In the Florida Everglades, alligator ponds are used as refuge habitat by fishes during seasonal drying of marsh habitats. Using an 11-year record of hydrological conditions and fish abundance in 10 marshes and 34 alligator ponds from two regions of the Everglades, we sought to characterize patterns of refuge use and temporal dynamics of fish abundance and community structure across changing intensity, duration, and frequency of drought disturbance. Abundance in alligator ponds was positively related to refuge size, distance from alternative refugia (e.g. canals), and abundance in surrounding marsh prior to hydrologic disturbance. Variables negatively related to abundance in alligator ponds included water level in surrounding marsh and abundance of disturbance-tolerant species. Refuge community structure did not differ between regions because the same subset of species in both regions used alligator ponds during droughts. When time between disturbances was short, fish abundance declined in marshes, and in the region with the most spatially extensive pattern of disturbance, community structure was altered in both marshes and alligator ponds because of an increased proportion of species more resistant to disturbance. These changes in community structure were associated with increases in both duration and frequency of hydrologic disturbance. Use of refuge habitat had a modal relationship with severity of disturbance regime. Spatial patterns of response suggest that decline in refuge use was because of decreased effectiveness of refuge habitat in reducing mortality and providing sufficient time for recovery for fish communities experiencing reduced time between disturbance events.
Resumo:
In the tropical and subtropical wet and dry regions, maintaining natural hydrologic connections between coastal rivers and adjacent ephemeral wetlands is critical to conserving and sustaining high levels of fisheries production within these systems. Though there is a consensus that there is a need to maintain these natural connections, little is known about what attributes of floodplain inundation regimes are most important in sustaining fisheries production. Two attributes of the flood season and thus floodplain inundation that may be particularly influential to fisheries are the amplitude of the flood season (floodplain water depth and spatial extent of inundation) and the duration of the flood season (i.e., time floodplains are inundated). In mangrove-dominated Everglades coastal rivers, seasonal inundation of upstream marsh floodplains may play an important role in provisioning recreational fisheries; however, this relationship remains unknown. Using two Everglades coastal river fisheries as a model, we tested whether the amplitude of the flood season or the duration of the flood season is more important in explaining variation in angler catch records of common snook and largemouth bass collected from 1992 to 2012. We validated angler catches with fisheries-independent electrofishing conducted in the same region from 2004 to 2012. Our results showed (1) that bass angler catches tracked electrofishing catches, while snook catches were completely mismatched. And (2) that previous year's marsh dynamics, particularly the duration of the flood season, was more influential than the flood season amplitude in explaining variation in bass catches, such that bass angler catches were negatively correlated to the period time that floodplains remained disconnected from coastal rivers in the previous year, while snook catches were not very well explained by floodplain inundation terms.
Resumo:
Short-hydroperiod Everglades wetlands have been disproportionately affected by reductions in freshwater inflows, land conversion and biotic invasions. Severe hydroperiod reductions in these habitats, including the Rocky Glades, coupled with proximity to canals that act as sources of invasions, may limit their ability to support high levels of aquatic production. We examined whether karst solution holes function as dry-down refuges for fishes, providing a source of marsh colonists upon reflooding, by tracking fish abundance, nonnative composition, and survival in solution holes throughout the dry season. We paired field surveys with an in situ nonnative predation experiment that tested the effects of predation by the recent invader, African jewelfish (Hemichromis letourneuxi) on native fishes. Over the 3 years surveyed, a large number of the solution holes dried before the onset of the wet season, while those retaining water had low survivorship and were dominated by nonnatives. In the experiment, mortality of eastern mosquitofish (Gambusia holbrooki) in the presence of African jewelfish was greater than that associated with deteriorating water quality. Under current water management, findings suggest that solution holes are largely sinks for native fishes, given the high frequency of drydown, extensive period of fish residence, and predation by nonnative fishes.
Resumo:
Understanding habitat selection and movement remains a key question in behavioral ecology. Yet, obtaining a sufficiently high spatiotemporal resolution of the movement paths of organisms remains a major challenge, despite recent technological advances. Observing fine-scale movement and habitat choice decisions in the field can prove to be difficult and expensive, particularly in expansive habitats such as wetlands. We describe the application of passive integrated transponder (PIT) systems to field enclosures for tracking detailed fish behaviors in an experimental setting. PIT systems have been applied to habitats with clear passageways, at fixed locations or in controlled laboratory and mesocosm settings, but their use in unconfined habitats and field-based experimental setups remains limited. In an Everglades enclosure, we continuously tracked the movement and habitat use of PIT-tagged centrarchids across three habitats of varying depth and complexity using multiple flatbed antennas for 14 days. Fish used all three habitats, with marked species-specific diel movement patterns across habitats, and short-lived movements that would be likely missed by other tracking techniques. Findings suggest that the application of PIT systems to field enclosures can be an insightful approach for gaining continuous, undisturbed and detailed movement data in unconfined habitats, and for experimentally manipulating both internal and external drivers of these behaviors.
Resumo:
Data on age, total length, total weight, gonad weight, gonadosomatic index (GSI), sex and reproductive stage for ice fish specimens collected along the sea ice gradient in McMurdo Sound, Antarctica. Species on which data are provided are; Trematomus bernacchii, Trematomus bernacchii, Pagothenia borchgrevinki and Trematomus newnesi. Location and year of collection is also included for each fish.
Resumo:
Harmful algal blooms can adversely affect fish communities, though their impacts are highly context-dependent and typically differ between fish species. Various approaches, comprising univariate and multivariate analyses and multimetric Fish Community Indices (FCI), were employed to characterise the perceived impacts of a Karlodinium veneficum bloom on the fish communities and ecological condition of the Swan Canning Estuary, Western Australia. The combined evidence suggests that a large proportion of the more mobile fish species in the offshore waters of the bloom-affected area relocated to other regions during the bloom. This was indicated by marked declines in mean species richness, catch rates and FCI scores in the bloom region but concomitant increases in these characteristics in more distal regions, and by pronounced and atypical shifts in the pattern of inter-regional similarities in fish community composition during the bloom. The lack of any significant changes among the nearshore fish communities revealed that bloom impacts were less severe there than in deeper, offshore waters. Nearshore habitats, which generally are in better ecological condition than adjacent offshore waters in this system, may provide refuges for fish during algal blooms and other perturbations, mirroring similar observations of fish avoidance responses to such stressors in estuaries worldwide.
Resumo:
Harmful algal blooms can adversely affect fish communities, though their impacts are highly context-dependent and typically differ between fish species. Various approaches, comprising univariate and multivariate analyses and multimetric Fish Community Indices (FCI), were employed to characterise the perceived impacts of a Karlodinium veneficum bloom on the fish communities and ecological condition of the Swan Canning Estuary, Western Australia. The combined evidence suggests that a large proportion of the more mobile fish species in the offshore waters of the bloom-affected area relocated to other regions during the bloom. This was indicated by marked declines in mean species richness, catch rates and FCI scores in the bloom region but concomitant increases in these characteristics in more distal regions, and by pronounced and atypical shifts in the pattern of inter-regional similarities in fish community composition during the bloom. The lack of any significant changes among the nearshore fish communities revealed that bloom impacts were less severe there than in deeper, offshore waters. Nearshore habitats, which generally are in better ecological condition than adjacent offshore waters in this system, may provide refuges for fish during algal blooms and other perturbations, mirroring similar observations of fish avoidance responses to such stressors in estuaries worldwide.