972 resultados para Serine carboxypeptidases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The binding free energy for the interaction between serines 204 and 207 of the fifth transmembrane helix of the beta(2)-adrenergic receptor (beta(2)-AR) and catecholic hydroxyl (OH) groups of adrenergic agonists was analyzed using double mutant cycles. Binding affinities for catecholic and noncatecholic agonists were measured in wild-type and mutant receptors, carrying alanine replacement of the two serines (S204A, S207A beta(2)-AR), a constitutive activating mutation, or both. The free energy coupling between the losses of binding energy attributable to OH deletion from the ligand and from the receptor indicates a strong interaction (nonadditivity) as expected for a direct binding between the two sets of groups. However, we also measured a significant interaction between the deletion of OH groups from the receptor and the constitutive activating mutation. This suggests that a fraction of the decrease in agonist affinity caused by serine mutagenesis may involve a shift in the conformational equilibrium of the receptor toward the inactive state. Direct measurements using a transient transfection assay confirm this prediction. The constitutive activity of the (S204A, S207A) beta(2)-AR mutant is 50 to 60% lower than that of the wild-type beta(2)-AR. We conclude that S204 and S207 do not only provide a docking site for the agonist, but also control the equilibrium of the receptor between active (R*) and inactive (R) forms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diabetes is associated with significant changes in plasma concentrations of lipoproteins. We tested the hypothesis that lipoproteins modulate the function and survival of insulin-secreting cells. We first detected the presence of several receptors that participate in the binding and processing of plasma lipoproteins and confirmed the internalization of fluorescent low density lipoprotein (LDL) and high density lipoprotein (HDL) particles in insulin-secreting beta-cells. Purified human very low density lipoprotein (VLDL) and LDL particles reduced insulin mRNA levels and beta-cell proliferation and induced a dose-dependent increase in the rate of apoptosis. In mice lacking the LDL receptor, islets showed a dramatic decrease in LDL uptake and were partially resistant to apoptosis caused by LDL. VLDL-induced apoptosis of beta-cells involved caspase-3 cleavage and reduction in the levels of the c-Jun N-terminal kinase-interacting protein-1. In contrast, the proapoptotic signaling of lipoproteins was antagonized by HDL particles or by a small peptide inhibitor of c-Jun N-terminal kinase. The protective effects of HDL were mediated, in part, by inhibition of caspase-3 cleavage and activation of Akt/protein kinase B. In conclusion, human lipoproteins are critical regulators of beta-cell survival and may therefore contribute to the beta-cell dysfunction observed during the development of type 2 diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serine proteases. We provide here evidence that this regulation of ASIC function is tightly linked to channel cleavage. Trypsin cleaves ASIC1a with a similar time course as it changes ASIC1a function, whereas ASIC1b, whose function is not modified by trypsin, is not cleaved. Trypsin cleaves ASIC1a at Arg-145, in the N-terminal part of the extracellular loop, between a highly conserved sequence and a sequence that is critical for ASIC1a inhibition by the venom of the tarantula Psalmopoeus cambridgei. This channel domain controls the inactivation kinetics and co-determines the pH dependence of ASIC gating. It undergoes a conformational change during inactivation, which renders the cleavage site inaccessible to trypsin in inactivated channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regulation of renal Na(+) transport is essential for controlling blood pressure, as well as Na(+) and K(+) homeostasis. Aldosterone stimulates Na(+) reabsorption by the Na(+)-Cl(-) cotransporter (NCC) in the distal convoluted tubule (DCT) and by the epithelial Na(+) channel (ENaC) in the late DCT, connecting tubule, and collecting duct. Aldosterone increases ENaC expression by inhibiting the channel's ubiquitylation and degradation; aldosterone promotes serum-glucocorticoid-regulated kinase SGK1-mediated phosphorylation of the ubiquitin-protein ligase Nedd4-2 on serine 328, which prevents the Nedd4-2/ENaC interaction. It is important to note that aldosterone increases NCC protein expression by an unknown post-translational mechanism. Here, we present evidence that Nedd4-2 coimmunoprecipitated with NCC and stimulated NCC ubiquitylation at the surface of transfected HEK293 cells. In Xenopus laevis oocytes, coexpression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreased NCC activity and surface expression. SGK1 prevented this inhibition in a kinase-dependent manner. Furthermore, deficiency of Nedd4-2 in the renal tubules of mice and in cultured mDCT(15) cells upregulated NCC. In contrast to ENaC, Nedd4-2-mediated inhibition of NCC did not require the PY-like motif of NCC. Moreover, the mutation of Nedd4-2 at either serine 328 or 222 did not affect SGK1 action, and mutation at both sites enhanced Nedd4-2 activity and abolished SGK1-dependent inhibition. Taken together, these results suggest that aldosterone modulates NCC protein expression via a pathway involving SGK1 and Nedd4-2 and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans les cellules épithéliales sensibles à l'aldostérone, le canal sodique épithélial (ENaC) joue un rôle critique dans le contrôle de l'équilibre sodique, le volume sanguin, et la pression sanguine. Le rôle d'ENaC est bien caractérisé dans le rein et les poumons, cependant le rôle d'ENaC et son régulateur positif la protéase activatrice de canal 1 (CAP1 /Prss8) sur le transport sodique dans le côlon reste en grande partie inconnu. Nous avons étudié l'importance d'ENaC et de CAPMPrss8 dans le côlon. Les souris déficientes pour la sous- unité aENaC (souris ScnnlaKO) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diète normale (RS) ou pauvre en sodium (LS), la différence de potentiel rectale sensible à l'amiloride (APDamii) était drastiquement diminuée et son rythme circadien atténué. Sous diète normale (RS) ou diète riche en sodium (HS) ou fort chargement de potassium, le sodium et le potassium plasmatique et urinaire n'étaient pas significativement changé. Cependant, sous LS, les souris Senni aK0 perdaient des quantités significativement augmentées de sodium dans leurs fèces, accompagnées par de très hauts taux d'aldostérone plasmatique et une rétention urinaire en sodium augmentée. Les souris déficientes en CAPl/PmS (Prss8K0) dans les cellules superficielles intestinales étaient viables et ne montraient pas de létalité embryonnaire ou postnatale. Sous diètes RS et HS cependant, les souris Prss8KO montraient une diminution significative du APDamil dans l'après-midi, mais le rythme circadien était maintenu. Sous diète LS, la perte de sodium par les fèces était accompagnée par des niveaux d'aldostérone plasmatiques plus élevés. Par conséquent, nous avons identifié la protéase activatrice de canal CAP 1 IPrss8 comme un régulateur important d'ENaC dans le côlon in vivo. De plus, nous étudions l'importance d'ENaC et de CAPIIPrss8 dans les conditions pathologiques comme les maladies inflammatoires chroniques de l'intestin (MICI). Le résultat préliminaire out montre qu'une déficience d'Prss8 mènait à la détérioration de la colite induite par le DSS comparé aux modèles contrôles respectifs. En résumé, l'étude a montré que sous restriction de sel, l'absence d'ENaC dans Pépithélium de surface du côlon était compensée par 1'activation du système rénine-angiotensine- aldostérone (RAAS) dans le rein. Ceci a mené à un pseudohypoaldostéronisme de type I spécifique au côlon avec résistance aux minéralocorticoïdes sans signe d'altération de rétention de potassium. - In aldosterone-responsive epithelial cells of kidney and colon, the epithelial sodium channel (ENaC) plays a critical role in the control of sodium balance, blood volume, and blood pressure. The role of ENaC is well characterized in kidney and lung, whereas role of ENaC and its positive regulator channel-activating protease 1 (CAPl/PrasS) on sodium transport in colon is largely unknown. We have investigated the importance of ENaC and CAPI/Prss8 in colon for sodium and potassium balance. Mice lacking the aENaC subunit (Scnnla mice) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Under regular (RS) or low salt (LS) diet, the amiloride sensitive rectal potential difference (APDamii) was drastically decreased and its circadian rhythm blunted. Under regular salt (RS) or high salt (HS) diets or under potassium loading, plasma and urinary sodium and potassium were not significantly changed. However, upon LS, the ScnnlaK0 mice lost significant amounts of sodium in their feces, accompanied by very high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAPl/PrasS (Prss8K0) in intestinal superficial cells were viable and did not show any fetal or perinatal lethality. Upon RS and HS diets, however, Prss8K0 exhibited a significantly reduced APDamii in the afternoon, but its circadian rhythm was maintained. Upon LS diet, sodium loss through feces was accompanied by higher plasma aldosterone levels. Thus, we have identified the channel-activating protease CAPl/Prss8 as an important in vivo regulator of ENaC in colon. Furthermore, we are investigating the importance of ENaC and CAPI/Prss8 in pathological conditions like inflammatory bowel disease (IBD). Preliminary data showed that PmS-deficiency led to worsening of DSS-induced colitis as compared to their respective controls. Overall, the present study has shown that under salt restriction, the absence of ENaC in colonic surface epithelium was compensated by the activation of renin-angiotensin- aldosterone (RAAS) system in the kidney. This led to a colon specific pseudohypoaldosteroni sm type 1 with mineralocorticoid resistance without evidence of impaired potassium retention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary The CD4 molecule plays a key role in AIDS pathogenesis, it is required for entry of the virus into permissive cells and its subsequent down-modulation of the cell surface is a hallmark of HN-1 infected cells. The virus encodes no less than three proteins that participate in this process: Nef, Vpu and Env. Vpu protein interacts with CD4 within the endoplasmic reticulum of infected cells, where it targets CD4 for degradation through the interaction with a cellular protein named ß-TrCP1. This F-box protein functions as the substrate recognition subunit of the SCF ß-Trcr E3 ubiquitin ligase, which normally induce the ubiquitination and subsequent degradation of various proteins such as ß-catenin and IxBa. Mammals possess a homologue of ß-TrCP1, HOS, also named ß-TrCP2 which has a cytoplasmic subcellular distribution. Structural analysis of the ligand-binding domain of both homologues shows striking surface similarities. Both F-box proteins have a redundant role in a number of cellular processes; however the potential role of ß-TrCP2 in HIV-1 infected cells has not been evaluated. In the present study, we assessed the existence of génetic variants of BRTC, encoding ß-TrCP1, and evaluated whether these variants would affect CD4 down-modulation. Additionally, we determined whether ß-TrCP2 shares with its homologue structural and functional properties that would allow it to bind Vpu, modulate CD4 expression, and thus participate in HN-1 pathogenesis. We identified a single nucleotide polymorphism present in the human population with an allelic frequency of 0.03 that leads to the substitution of alanine 507 by a serine. However, we showed by transient transfection in HeLa CD4+ cells that this variant behaves as ß-TrCP1 with respect to CD4 down-modulation. We established transient expression systems in HeLa CD4+ cells to test whether ß-TrCP2 is implicated in Vpu-mediated CD4 down-modulation. We show by coimmunoprecipitation experiments that ß-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as ß-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be completely reversed through the silencing of endogenous ß-TrCP 1 or ß-TrCP2 individually, but required both genes to be silenced simultaneously. We evaluated the role of ß-TrCP1 and ß-TrCP2 in HIV-1 life cycle using silencing prior to actual viral infection. Both ß-TrCP1 and ß-TrCP2 contributed to CD4 down-modulation during aone-cycle viral infection iri Ghost cells. In addition, the combined silencing of both homologues in the absence of env and nef reversed CD4 down-modulation, showing that ß-TrCP 1 and ß-TrCP2 represent the main and additive effectors of HIV-1 encoded Vpu. In addition, we showed that silencing of ß-TrCPI but not ß-TrCP2 induced a decrease of HIV-1 LTR-driven expression. In a transient transfection system with Tat and a LTR luciferase reporter, both homologues modulated LTR-driven expression. The present study revealed that ß-TrCP2 represents a novel protein participating in HIV-1 cycle and complete comprehension of the complex interplay occurring between the two F-Box will improve our understanding of HIV-1 infection. Résumé La molécule CD4 joue un rôle clef dans la pathogenèse du SIDA ; elle est requise pour l'entrée du virus dans les cellules permissives et la diminution de sa concentration au niveau de la surface cellulaire est une importante caractéristique des cellules infectées par le VIH-1. Le virus encode pas moins de trois protéines qui participent à ce processus Nef, Vpu et Env. La protéine Vpu lie CD4 au niveau du réticulum endoplasmique et induit sa dégradation en interagissant avec une protéine cellulaire nommée ß-TrCP 1. Cette protéine de type F-Box est une sous unité du complexe ubiquitine-ligase E3 SCFß-TrCP. Elle permet la reconnaissance du substrat par le complexe qui induit l'ubiquitination et la subséquente dégradation de diverses protéines cellulaires comme la ß-catenin ou IκBα. Les mammifères possèdent un homologue à ß-TrCP1appelé ß-TrCP2 (ou HOS). L'analyse comparative du domaine permettant la reconnaissance des substrats des deux homologues montre de frappantes similarités. Le rôle de ß-TrCP2 dans le cycle viral du VIH-1 n'a pas encore été évalué. Lors de cette étude, nous avons recherché l'existence de variants génétique de BTRC (codant pour ß-TrCP1) et nous avons évalué si ces variants pourraient affecter la dégradation des molécules CD4 induite par le virus. Nous avons ainsi identifié un polymorphisme présent dans la population humaine avec une fréquence allélique de 0.03 qui consiste en une substitution de l'alanine 507 par une sérine. Nous avons cependant montré par transfection dans des cellules HeLa CD4+ que ce variant se comporte comme ß-TrCP 1 en ce qui concerne la modulation de CD4. De plus, nous avons déterminé si ß-TrCP2 partageait avec son homologue des propriétés structurelles et fonctionnelles qui lui permettraient de lier Vpu, moduler la concentration de CD4 et ainsi prendre part à la pathogenèse du SIDA. Pour ce faire, nous avons établi un système d'expression temporaire dans des cellules HeLa CD4+. Par co-immunoprécipitation, nous avons montré que ß-TrCP2 lie Vpu et est capable d'induire la dégradation de CD4 aussi efficacement que ß-TrCP1. Dans deux différentes lignées cellulaires, HeLa CD4+ et Jurkat, la dégradation de CD4 n'a pu être complètement inhibée par le silencing individuel de ß-TrCP 1 ou ß-TrCP2, mais nécessitait le silencing simultané des 2 gènes. Nous avons évalué le rôle des deux homologues dans le cycle viral du VIH-1 en infectant des cellules Ghost avec le virus après avoir effectué un silencing des deux protéines. Nous avons ainsi montré que ß-TrCP 1 et ß-TrCP2 contribuent de manière additive à la dégradation de CD4 induite par une infection du VIH-1. Le silencing combiné des deux homologues inhiba complètement cette dégradation en l'absence de env et nef, prouvant qu'aucune autre voie ne participe à ce processus: En outre, nous avons montré que le silencing de ß-TrCP 1 mais pas celui de ß-TrCP2 induisait une diminution de l'expression virale sous contrôle du LTR. Nous n'avons cependant pas été en mesure de reconstituer cet effet en exprimant Tat et un gène reporteur sous contrôle du LTR dans des cellules HeLa CD4+. Le présent travail révèle que ß-TrCP2 représente une nouvelle protéine participant dans le cycle viral du VIH-1. Une complète compréhension de l'effet de chacun des deux homologues sur le cycle viral permettra d'améliorer notre compréhension de l'infection par le VIH-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The relevance of immune-endocrine interactions to the regulation of ovarian function in teleosts is virtually unexplored. As part of the innate immune response during infection, a number of cytokines such as tumor necrosis factor alpha (TNF alpha) and other immune factors, are produced and act on the reproductive system. However, TNF alpha is also an important physiological player in the ovulatory process in mammals. In the present study, we have examined for the first time the effects of TNF alpha in vitro in preovulatory ovarian follicles of a teleost fish, the brown trout (Salmo trutta). Methods: To determine the in vivo regulation of TNF alpha expression in the ovary, preovulatory brook trout (Salvelinus fontinalis) were injected intraperitoneally with either saline or bacterial lipopolysaccharide (LPS). In control and recombinant trout TNF alpha (rtTNF alpha)-treated brown trout granulosa cells, we examined the percentage of apoptosis by flow cytometry analysis and cell viability by propidium iodide (PI) staining. Furthermore, we determined the in vitro effects of rtTNF alpha on follicle contraction and testosterone production in preovulatory brown trout ovarian follicles. In addition, we analyzed the gene expression profiles of control and rtTNF alpha-treated ovarian tissue by microarray and real-time PCR (qPCR) analyses. Results: LPS administration in vivo causes a significant induction of the ovarian expression of TNF alpha. Treatment with rtTNF alpha induces granulosa cell apoptosis, decreases granulosa cell viability and stimulates the expression of genes known to be involved in the normal ovulatory process in trout. In addition, rtTNF alpha causes a significant increase in follicle contraction and testosterone production. Also, using a salmonid-specific microarray platform (SFA2.0 immunochip) we observed that rtTNF alpha induces the expression of genes known to be involved in inflammation, proteolysis and tissue remodeling. Furthermore, the expression of kallikrein, TOP-2, serine protease 23 and ADAM 22, genes that have been postulated to be involved in proteolytic and tissue remodeling processes during ovulation in trout, increases in follicles incubated in the presence of rtTNF alpha. Conclusions In view of these results, we propose that TNF alpha could have an important role in the biomechanics of follicle weakening, ovarian rupture and oocyte expulsion during ovulation in trout, primarily through its stimulation of follicular cell apoptosis and the expression of genes involved in follicle wall proteolysis and contraction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The serine protease thrombin plays a role in signalling ischemic neuronal death in the brain. Paradoxically, endogenous neuroprotective mechanisms can be triggered by preconditioning with thrombin (thrombin preconditioning, TPC), leading to tolerance to cerebral ischemia. Here we studied the role of thrombin's endogenous potent inhibitor, protease nexin-1 (PN-1), in ischemia and in tolerance to cerebral ischemia induced by TPC. Cerebral ischemia was modelled in vitro in organotypic hippocampal slice cultures from rats or genetically engineered mice lacking PN-1 or with the reporter gene lacZ knocked into the PN-1 locus PN-1HAPN-1-lacZ/HAPN-1-lacZ (PN-1 KI) exposed to oxygen and glucose deprivation (OGD). We observed increased thrombin enzyme activity in culture homogenates 24 h after OGD. Lack of PN-1 increased neuronal death in the CA1, suggesting that endogenous PN-1 inhibits thrombin-induced neuronal damage after ischemia. OGD enhanced β-galactosidase activity, reflecting PN-1 expression, at one and 24 h, most strikingly in the stratum radiatum, a glial cell layer adjacent to the CA1 layer of ischemia sensitive neurons. TPC, 24 h before OGD, additionally increased PN-1 expression 1 h after OGD, compared to OGD alone. TPC failed to induce tolerance in cultures from PN-1(-/-) mice confirming PN-1 as an important TPC target. PN-1 upregulation after TPC was blocked by the c-Jun N-terminal kinase (JNK) inhibitor, L-JNKI1, known to block TPC. This work suggests that PN-1 is an endogenous neuroprotectant in cerebral ischemia and a potential target for neuroprotection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common disorder leading to lactic acidemia. Phosphorylation of specific serine residues of the E1-alpha subunit of the PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We recently found that phenylbutyrate prevents phosphorylation of the E1-alpha subunit of the branched-chain ketoacid dehydrogenase complex (BCKDC) and reduces plasma concentrations of neurotoxic branched chain amino acids in patients with maple syrup urine disease (MSUD), due to the deficiency of BCKDC. We hypothesized that, similarly to BCKDC, phenylbutyrate enhances PDHC enzymatic activity by increasing the portion of unphosphorylated enzyme. To test this hypothesis, we treated wild-type human fibroblasts at different concentrations of phenylbutyrate and found that it reduces the levels of phosphorylated E1-alpha as compared to untreated cells. To investigate the effect of phenylbutyrate in vivo, we administered phenylbutyrate to C57B6 wild-type mice and we detected a significant increase in Pdhc enzyme activity and a reduction of phosphorylated E1-alpha subunit in brains and muscles as compared to saline treated mice. Being a drug already approved for human use, phenylbutyrate has great potential for increasing the residual enzymatic activity of PDHC and to improve the clinical phenotype of PDHC deficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Tyrosine kinase inhibitors (TKI) improve the outcome of patients with advanced gastrointestinal stromal tumour (GIST), but treatment failure is frequent, and prognosis then bleak. Smaller trials in this setting suggested activity for sorafenib, a multikinase inhibitor of receptor tyrosine kinases and RAF serine/threonine kinases. PATIENTS AND METHODS: We retrospectively evaluated the efficacy of sorafenib, starting dose 400mg twice daily, in a large community-based cohort of 124 patients treated in 12 European and one United States (U.S.) cancer centre. All but one patient had a WHO performance score 0-2. All had failed both imatinib and sunitinib, 68 patients nilotinib and 26 had failed investigational therapy, too. RESULTS: Twelve (10%) patients responded to sorafenib and 70 (57%) patients achieved disease stabilisation. Sorafenib was moderately tolerated, and toxicity reported in 56% of the patients. Rash, hand-foot-syndrome and diarrhea occurred frequently. Sorafenib dosage was reduced in a third of patients, but this did not have an impact on progression-free survival (PFS) (p=0.15). Median PFS was 6.4months (95% confidence interval [CI], 4.6-8.0months) and median overall survival (OS) 13.5months (95% CI, 10.0-21.0months). Patients with a good performance status and those who responded to sorafenib had a significant better PFS. CONCLUSION: We conclude that sorafenib is active in GIST resistant to imatinib, sunitinib and nilotinib. These results warrant further investigation of sorafenib or similar molecules in GIST.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aldosterone exerts its effects through interactions with two types of binding sites, the mineralocorticoid (MR) and the glucocorticoid (GR) receptors. Although both receptors are known to be involved in the anti-natriuretic response to aldosterone, the mechanisms of signal transduction leading to modulation of electrolyte transport are not yet fully understood. This study measured the Na(+) and K(+) urinary excretion and the mRNA levels of three known aldosterone-induced transcripts, the serum and glucocorticoid-induced kinase (Sgk-1), the alpha subunit of the epithelial Na(+) channel (alphaENaC), and the glucocorticoid-induced-leucine-zipper protein (GILZ) in the whole kidney and in isolated cortical collecting tubules of adrenalectomized rats treated with low doses of aldosterone and/or dexamethasone. The resulting plasma concentrations of both steroids were close to 1 nmol/L. Aldosterone, given with or without dexamethasone, induced anti-natriuresis and kaliuresis, whereas dexamethasone alone did not. GILZ and alphaENaC transcripts were higher after treatment with either or both hormones, whereas the mRNA abundance of Sgk-1 was increased in the cortical collecting tubule by aldosterone but not by dexamethasone. We conclude the increased expression of Sgk-1 in the cortical collecting tubules is a primary event in the early antinatriuretic and kaliuretic responses to physiologic concentrations of aldosterone. Induction of alphaENaC and/or GILZ mRNAs may play a permissive role in the enhancement of the early and/or late responses; these effects may be necessary for a full response but do not by themselves promote early changes in urinary Na(+) and K(+) excretion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Memory formation is known to occur at the level of synaptic contacts between neurons. It therefore comes as a surprise that another type of brain cell, the astrocyte, is also involved in establishing memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated the role of the G alpha-q (Galphaq) subunit of heterotrimeric G proteins in the insulin signaling pathway leading to GLUT4 translocation. We inhibited endogenous Galphaq function by single cell microinjection of anti-Galphaq/11 antibody or RGS2 protein (a GAP protein for Galphaq), followed by immunostaining to assess GLUT4 translocation in 3T3-L1 adipocytes. Galphaq/11 antibody and RGS2 inhibited insulin-induced GLUT4 translocation by 60 or 75%, respectively, indicating that activated Galphaq is important for insulin-induced glucose transport. We then assessed the effect of overexpressing wild-type Galphaq (WT-Galphaq) or a constitutively active Galphaq mutant (Q209L-Galphaq) by using an adenovirus expression vector. In the basal state, Q209L-Galphaq expression stimulated 2-deoxy-D-glucose uptake and GLUT4 translocation to 70% of the maximal insulin effect. This effect of Q209L-Galphaq was inhibited by wortmannin, suggesting that it is phosphatidylinositol 3-kinase (PI3-kinase) dependent. We further show that Q209L-Galphaq stimulates PI3-kinase activity in p110alpha and p110gamma immunoprecipitates by 3- and 8-fold, respectively, whereas insulin stimulates this activity mostly in p110alpha by 10-fold. Nevertheless, only microinjection of anti-p110alpha (and not p110gamma) antibody inhibited both insulin- and Q209L-Galphaq-induced GLUT4 translocation, suggesting that the metabolic effects induced by Q209L-Galphaq are dependent on the p110alpha subunit of PI3-kinase. In summary, (i) Galphaq appears to play a necessary role in insulin-stimulated glucose transport, (ii) Galphaq action in the insulin signaling pathway is upstream of and dependent upon PI3-kinase, and (iii) Galphaq can transmit signals from the insulin receptor to the p110alpha subunit of PI3-kinase, which leads to GLUT4 translocation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

After antigenic challenge, naive T lymphocytes enter a program of proliferation and differentiation during the course of which they acquire effector functions and may ultimately become memory cells. In humans, the pathways of effector and memory T-cell differentiation remain poorly defined. Here we describe the properties of 2 CD8+ T-lymphocyte subsets, RA+CCR7-27+28+ and RA+CCR7-27+28-, in human peripheral blood. These cells display phenotypic and functional features that are intermediate between naive and effector T cells. Like naive T lymphocytes, both subsets show relatively long telomeres. However, unlike the naive population, these T cells exhibit reduced levels of T-cell receptor excision circles (TRECs), indicating they have undergone additional rounds of in vivo cell division. Furthermore, we show that they also share effector-type properties. At equivalent in vivo replicative history, the 2 subsets express high levels of Fas/CD95 and CD11a, as well as increasing levels of effector mediators such as granzyme B, perforin, interferon gamma, and tumor necrosis factor alpha. Both display partial ex vivo cytolytic activity and can be found among cytomegalovirus-specific cytolytic T cells. Taken together, our data point to the presence of T cells with intermediate effector-like functions and suggest that these subsets consist of T lymphocytes that are evolving toward a more differentiated effector or effector-memory stage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stathmin is a regulator of microtubule dynamics which undergoes extensive phosphorylation during the cell cycle as well as in response to various extracellular factors. Four serine residues are targets for protein kinases: Ser-25 and Ser-38 for proline-directed kinases such as mitogen-activated protein kinase and cyclin-dependent protein kinase, and Ser-16 and Ser-63 for cAMP-dependent protein kinase. We studied the effect of phosphorylation on the microtubule-destabilizing activity of stathmin and on its interaction with tubulin in vitro. We show that triple phosphorylation on Ser-16, Ser-25, and Ser-38 efficiently inhibits its activity and prevents its binding to tubulin.