961 resultados para Septum of Brain
Resumo:
Report produced by Iowa Public Health, Divsion of Brain Injury.
Resumo:
SUMMARY : The function of sleep for the organism is one of the most persistent and perplexing questions in biology. Current findings lead to the conclusion that sleep is primarily for the brain. In particular, a role for sleep in cognitive aspects of brain function is supported by behavioral evidence both in humans and animals. However, in spite of remarkable advancement in the understanding of the mechanisms underlying sleep generation and regulation, it has been proven difficult to determine the neurobiological mechanisms underlying the beneficial effect of sleep, and the detrimental impact of sleep loss, on learning and memory processes. In my thesis, I present results that lead to several critical steps forward in the link between sleep and cognitive function. My major result is the molecular identification and physiological analysis of a protein, the NR2A subunit of NMDA receptor (NMDAR), that confers sensitivity to sleep loss to the hippocampus, a brain structure classically involved in mnemonic processes. Specifically, I used a novel behavioral approach to achieve sleep deprivation in adult C57BL6/J mice, yet minimizing the impact of secondary factors associated with the procedure,.such as stress. By using in vitro electrophysiological analysis, I show, for the first time, that sleep loss dramatically affects bidirectional plasticity at CA3 to CA1 synapses in the hippocampus, a well established cellular model of learning and memory. 4-6 hours of sleep loss elevate the modification threshold for bidirectional synaptic plasticity (MT), thereby promoting long-term depression of CA3 to CA 1 synaptic strength after stimulation in the theta frequency range (5 Hz), and rendering long-term potentiation induction.more difficult. Remarkably, 3 hours of recovery sleep, after the deprivation, reset the MT at control values, thus re-establishing the normal proneness of synapses to undergo long-term plastic changes. At the molecular level, these functional changes are paralleled by a change in the NMDAR subunit composition. In particular, the expression of the NR2A subunit protein of NMDAR at CA3 to CA1 synapses is selectively and rapidly increased by sleep deprivation, whereas recovery sleep reset NR2A synaptic content to control levels. By using an array of genetic, pharmacological and computational approaches, I demonstrate here an obligatory role for NR2A-containing NMDARs in conveying the effect of sleep loss on CA3 to CAl MT. Moreover, I show that a genetic deletion of the NR2A subunit fully preserves hippocampal plasticity from the impact of sleep loss, whereas it does not alter sleepwake behavior and homeostatic response to sleep deprivation. As to the mechanism underlying the effects of the NR2A subunit on hippocampal synaptic plasticity, I show that the increased NR2A expression after sleep loss distinctly affects the contribution of synaptic and more slowly recruited NMDAR pools activated during plasticity-induction protocols. This study represents a major step forward in understanding the mechanistic basis underlying sleep's role for the brain. By showing that sleep and sleep loss affect neuronal plasticity by regulating the expression and function of a synaptic neurotransmitter receptor, I propose that an important aspect of sleep function could consist in maintaining and regulating protein redistribution and ion channel trafficking at central synapses. These findings provide a novel starting point for investigations into the connections between sleep and learning, and they may open novel ways for pharmacological control over hippocampal .function during periods of sleep restriction. RÉSUMÉ DU PROJET La fonction du sommeil pour l'organisme est une des questions les plus persistantes et difficiles dans la biologie. Les découvertes actuelles mènent à la conclusion que le sommeil est essentiel pour le cerveau. En particulier, le rôle du sommeil dans les aspects cognitifs est soutenu par des études comportementales tant chez les humains que chez les animaux. Cependant, malgré l'avancement remarquable dans la compréhension des mécanismes sous-tendant la génération et la régulation du sommeil, les mécanismes neurobiologiques qui pourraient expliquer l'effet favorable du sommeil sur l'apprentissage et la mémoire ne sont pas encore clairs. Dans ma thèse, je présente des résultats qui aident à clarifier le lien entre le sommeil et la fonction cognitive. Mon résultat le plus significatif est l'identification moléculaire et l'analyse physiologique d'une protéine, la sous-unité NR2A du récepteur NMDA, qui rend l'hippocampe sensible à la perte de sommeil. Dans cette étude, nous avons utilisé une nouvelle approche expérimentale qui nous a permis d'induire une privation de sommeil chez les souris C57BL6/J adultes, en minimisant l'impact de facteurs confondants comme, par exemple, le stress. En utilisant les techniques de l'électrophysiologie in vitro, j'ai démontré, pour la première fois, que la perte de sommeil est responsable d'affecter radicalement la plasticité bidirectionnelle au niveau des synapses CA3-CA1 de l'hippocampe. Cela correspond à un mécanisme cellulaire de l'apprentissage et de la mémoire bien établi. En particulier, 4-6 heures de privation de sommeil élèvent le seuil de modification pour la plasticité synaptique bidirectionnelle (SM). Comme conséquence, la dépression à long terme de la transmission synaptique est induite par la stimulation des fibres afférentes dans la bande de fréquences thêta (5 Hz), alors que la potentialisation à long terme devient plus difficile. D'autre part, 3 heures de sommeil de récupération sont suffisant pour rétablir le SM aux valeurs contrôles. Au niveau moléculaire, les changements de la plasticité synaptiques sont associés à une altération de la composition du récepteur NMDA. En particulier, l'expression synaptique de la protéine NR2A du récepteur NMDA est rapidement augmentée de manière sélective par la privation de sommeil, alors que le sommeil de récupération rétablit l'expression de la protéine au niveau contrôle. En utilisant des approches génétiques, pharmacologiques et computationnelles, j'ai démontré que les récepteurs NMDA qui expriment la sous-unité NR2A sont responsables de l'effet de la privation de sommeil sur le SM. De plus, nous avons prouvé qu'une délétion génétique de la sous-unité NR2A préserve complètement la plasticité synaptique hippocampale de l'impact de la perte de sommeil, alors que cette manipulation ne change pas les mécanismes de régulation homéostatique du sommeil. En ce qui concerne les mécanismes, j'ai .découvert que l'augmentation de l'expression de la sous-unité NR2A au niveau synaptique modifie les propriétés de la réponse du récepteur NMDA aux protocoles de stimulations utilisés pour induire la plasticité. Cette étude représente un pas en avant important dans la compréhension de la base mécaniste sous-tendant le rôle du sommeil pour le cerveau. En montrant que le sommeil et la perte de sommeil affectent la plasticité neuronale en régulant l'expression et la fonction d'un récepteur de la neurotransmission, je propose qu'un aspect important de la fonction du sommeil puisse être finalisé au règlement de la redistribution des protéines et du tracking des récepteurs aux synapses centraux. Ces découvertes fournissent un point de départ pour mieux comprendre les liens entre le sommeil et l'apprentissage, et d'ailleurs, ils peuvent ouvrir des voies pour des traitements pharmacologiques dans le .but de préserver la fonction hippocampale pendant les périodes de restriction de sommeil.
Resumo:
Background In a previous study, the European Organisation for Research and Treatment of Cancer (EORTC) reported a scoring system to predict survival of patients with low-grade gliomas (LGGs). A major issue in the diagnosis of brain tumors is the lack of agreement among pathologists. New models in patients with LGGs diagnosed by central pathology review are needed. Methods Data from 339 EORTC patients with LGGs diagnosed by central pathology review were used to develop new prognostic models for progression-free survival (PFS) and overall survival (OS). Data from 450 patients with centrally diagnosed LGGs recruited into 2 large studies conducted by North American cooperative groups were used to validate the models. Results Both PFS and OS were negatively influenced by the presence of baseline neurological deficits, a shorter time since first symptoms (<30 wk), an astrocytic tumor type, and tumors larger than 5 cm in diameter. Early irradiation improved PFS but not OS. Three risk groups have been identified (low, intermediate, and high) and validated. Conclusions We have developed new prognostic models in a more homogeneous LGG population diagnosed by central pathology review. This population better fits with modern practice, where patients are enrolled in clinical trials based on central or panel pathology review. We could validate the models in a large, external, and independent dataset. The models can divide LGG patients into 3 risk groups and provide reliable individual survival predictions. Inclusion of other clinical and molecular factors might still improve models' predictions.
Enhanced visuospatial memory following intracerebroventricular administration of nerve growth factor
Resumo:
The present work assessed the effects of intracerebroventricular injections of rh recombined human nerve growth factor (rh NGF) (5 micrograms/2.5 microl) at postnatal days 12 and 13 upon the development of spatial learning capacities. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and at reducing attention to the distant spatial cues. Later, at the age of 6 months, all the rats were trained in a radial-arm maze task. Treatment effects were found in both immature and adult rats. The injection of NGF improved the performance in the Morris navigation task in both training conditions. There was a significant reduction in the escape latency and an increased bias toward the training platform quadrant during probe trials. The most consistent effect was the precocious development of an adult-like spatial memory. In the radial-arm maze, the NGF-treated rats made significantly fewer reentries than vehicle rats and this effect was particularly marked in the treated female rats. Taken together, these experiments reveal that the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures facilitated by the action of NGF. Moreover, these experiments demonstrate that an acute pharmacological treatment that leads to a transient modification in the choline acetyltransferase activity can induce a behavioral change long after the treatment.
Resumo:
Brain inflammatory response is triggered by the activation of microglial cells and astrocytes in response to various types of CNS injury, including neurotoxic insults. Its outcome is determined by cellular interactions, inflammatory mediators, as well as trophic and/or cytotoxic signals, and depends on many additional factors such as the intensity and duration of the insult, the extent of both the primary neuronal damage and glial reactivity and the developmental stage of the brain. Depending on particular circumstances, the brain inflammatory response can promote neuroprotection, regeneration or neurodegeneration. Glial reactivity, regarded as the central phenomenon of brain inflammation, has also been used as an early marker of neurotoxicity. To study the mechanisms underlying the glial reactivity, serum-free aggregating brain cell cultures were used as an in vitro model to test the effects of conventional neurotoxicants such as organophosphate pesticides, heavy metals, excitotoxins and mycotoxins. This approach was found to be relevant and justified by the complex cell-cell interactions involved in the brain inflammatory response, the variability of the glial reactions and the multitude of mediators involved. All these variables need to be considered for the elucidation of the specific cellular and molecular reactions and their consequences caused by a given chemical insult.
Resumo:
The presence of three water channels (aquaporins, AQP), AQP1, AQP4 and AQP9 were observed in normal brain and several rodent models of brain pathologies. Little is known about AQP distribution in the primate brain and its knowledge will be useful for future testing of drugs aimed at preventing brain edema formation. We studied the expression and cellular distribution of AQP1, 4 and 9 in the non-human primate brain. The distribution of AQP4 in the non-human primate brain was observed in perivascular astrocytes, comparable to the observation made in the rodent brain. In contrast with rodent, primate AQP1 is expressed in the processes and perivascular endfeet of a subtype of astrocytes mainly located in the white matter and the glia limitans, possibly involved in water homeostasis. AQP1 was also observed in neurons innervating the pial blood vessels, suggesting a possible role in cerebral blood flow regulation. As described in rodent, AQP9 mRNA and protein were detected in astrocytes and in catecholaminergic neurons. However additional locations were observed for AQP9 in populations of neurons located in several cortical areas of primate brains. This report describes a detailed study of AQP1, 4 and 9 distributions in the non-human primate brain, which adds to the data already published in rodent brains. This relevant species differences have to be considered carefully to assess potential drugs acting on AQPs non-human primate models before entering human clinical trials.
Resumo:
Infantile spasms (IS) is the most severe and common form of epilepsy occurring in the first year of life. At least half of IS cases are idiopathic in origin, with others presumed to arise because of brain insult or malformation. Here, we identify a locus for IS by high-resolution mapping of 7q11.23-q21.1 interstitial deletions in patients. The breakpoints delineate a 500 kb interval within the MAGI2 gene (1.4 Mb in size) that is hemizygously disrupted in 15 of 16 participants with IS or childhood epilepsy, but remains intact in 11 of 12 participants with no seizure history. MAGI2 encodes the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 that interacts with Stargazin, a protein also associated with epilepsy in the stargazer mouse.
Resumo:
PURPOSE: As the magnetic susceptibility induced frequency shift increases linearly with magnetic field strength, the present work evaluates manganese as a phase imaging contrast agent and investigates the dose dependence of brain enhancement in comparison to T1 -weighted imaging after intravenous administration of MnCl2 . METHODS: Experiments were carried out on 12 Sprague-Dawley rats. MnCl2 was infused intravenously with the following doses: 25, 75, 125 mg/kg (n=4). Phase, T1 -weighted images and T1 maps were acquired before and 24h post MnCl2 administration at 14.1 Tesla. RESULTS: Manganese enhancement was manifested in phase imaging by an increase in frequency shift differences between regions rich in calcium gated channels and other tissues, together with local increase in signal to noise ratio (from the T1 reduction). Such contrast improvement allowed a better visualization of brain cytoarchitecture. The measured T1 decrease observed across different manganese doses and in different brain regions were consistent with the increase in the contrast to noise ratio (CNR) measured by both T1 -weighted and phase imaging, with the strongest variations being observed in the dentate gyrus and olfactory bulb. CONCLUSION: Overall from its high sensitivity to manganese combined with excellent CNR, phase imaging is a promising alternative imaging protocol to assess manganese enhanced MRI at ultra high field. Magn Reson Med 72:1246-1256, 2014. © 2013 Wiley Periodicals, Inc.
Resumo:
The detection of Parkinson's disease (PD) in its preclinical stages prior to outright neurodegeneration is essential to the development of neuroprotective therapies and could reduce the number of misdiagnosed patients. However, early diagnosis is currently hampered by lack of reliable biomarkers. (1) H magnetic resonance spectroscopy (MRS) offers a noninvasive measure of brain metabolite levels that allows the identification of such potential biomarkers. This study aimed at using MRS on an ultrahigh field 14.1 T magnet to explore the striatal metabolic changes occurring in two different rat models of the disease. Rats lesioned by the injection of 6-hydroxydopamine (6-OHDA) in the medial-forebrain bundle were used to model a complete nigrostriatal lesion while a genetic model based on the nigral injection of an adeno-associated viral (AAV) vector coding for the human α-synuclein was used to model a progressive neurodegeneration and dopaminergic neuron dysfunction, thereby replicating conditions closer to early pathological stages of PD. MRS measurements in the striatum of the 6-OHDA rats revealed significant decreases in glutamate and N-acetyl-aspartate levels and a significant increase in GABA level in the ipsilateral hemisphere compared with the contralateral one, while the αSyn overexpressing rats showed a significant increase in the GABA striatal level only. Therefore, we conclude that MRS measurements of striatal GABA levels could allow for the detection of early nigrostriatal defects prior to outright neurodegeneration and, as such, offers great potential as a sensitive biomarker of presymptomatic PD.
Resumo:
Recent years have seen a surge in mathematical modeling of the various aspects of neuron-astrocyte interactions, and the field of brain energy metabolism is no exception in that regard. Despite the advent of biophysical models in the field, the long-lasting debate on the role of lactate in brain energy metabolism is still unresolved. Quite the contrary, it has been ported to the world of differential equations. Here, we summarize the present state of this discussion from the modeler's point of view and bring some crucial points to the attention of the non-mathematically proficient reader.
Resumo:
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. J. Comp. Neurol. 522:2729-2740, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
The amino acid sequence of mouse brain beta spectrin (beta fodrin), deduced from the nucleotide sequence of complementary DNA clones, reveals that this non-erythroid beta spectrin comprises 2363 residues, with a molecular weight of 274,449 Da. Brain beta spectrin contains three structural domains and we suggest the position of several functional domains including f-actin, synapsin I, ankyrin and spectrin self association sites. Analysis of deduced amino acid sequences indicated striking homology and similar structural characteristics of brain beta spectrin repeats beta 11 and beta 12 to globins. In vitro analysis has demonstrated that heme is capable of specific attachment to brain spectrin, suggesting possible new functions in electron transfer, oxygen binding, nitric oxide binding or heme scavenging.
Resumo:
Purpose of review: An overview of recent advances in structural neuroimaging and their impact on movement disorders research is presented. Recent findings: Novel developments in computational neuroanatomy and improvements in magnetic resonance image quality have brought further insight into the pathophysiology of movement disorders. Sophisticated automated techniques allow for sensitive and reliable in-vivo differentiation of phenotype/genotype related traits and their interaction even at presymptomatic stages of disease. Summary: Voxel-based morphometry consistently demonstrates well defined patterns of brain structure changes in movement disorders. Advanced stages of idiopathic Parkinson's disease are characterized by grey matter volume decreases in basal ganglia. Depending on the presence of cognitive impairment, volume changes are reported in widespread cortical and limbic areas. Atypical Parkinsonian syndromes still pose a challenge for accurate morphometry-based classification, especially in early stages of disease progression. Essential tremor has been mainly associated with thalamic and cerebellar changes. Studies on preclinical Huntington's disease show progressive loss of tissue in the caudate and cortical thinning related to distinct motor and cognitive phenotypes. Basal ganglia volume in primary dystonia reveals an interaction between genotype and phenotype such that brain structure changes are modulated by the presence of symptoms under the influence of genetic factors. Tics in Tourette's syndrome correlate with brain structure changes in limbic, motor and associative fronto-striato-parietal circuits. Computational neuroanatomy provides useful tools for in-vivo assessment of brain structure in movement disorders, allowing for accurate classification in early clinical stages as well as for monitoring therapy effects and/or disease progression.
Resumo:
The time constant of cerebral arterial bed (in brief time constant) is a product of brain arterial compliance (C(a)) and resistance (CVR). We tested the hypothesis that in normal subjects, changes in end-tidal CO(2) (EtCO(2)) affect the value of the time constant. C(a) and CVR were estimated using mathematical transformations of arterial pressure (ABP) and transcranial Doppler (TCD) cerebral blood flow velocity waveforms. Responses of the time constant to controlled changes in EtCO(2) were compared in 34 young volunteers. Hypercapnia shortened the time constant (0.22 s [0.17, 0.26] vs. 0.16 s [0.13, 0.20]; p = 0.000001), while hypocapnia lengthened the time constant (0.22 s [0.17, 0.26] vs. 0.23 s [0.19, 0.32]; p < 0.0032). The time constant was negatively correlated with changes in EtCO(2) (R(partial) = -0.68, p < 0.000001). This was associated with a decrease in CVR when EtCO(2) increased (R(partial) = -0.80, p < 0.000001) and C(a) remained independent of changes in EtCO(2). C(a) was negatively correlated with mean ABP (R(partial) = -0.68, p < 0.000001). In summary, the time constant shortens with increasing EtCO(2). Its potential role in cerebrovascular investigations needs further studies.
Resumo:
BACKGROUND AND PURPOSE: Lactate is central for the regulation of brain metabolism and is an alternative substrate to glucose after injury. Brain lactate metabolism in patients with subarachnoid hemorrhage has not been fully elucidated. METHODS: Thirty-one subarachnoid hemorrhage patients monitored with cerebral microdialysis (CMD) and brain oxygen (PbtO(2)) were studied. Samples with elevated CMD lactate (>4 mmol/L) were matched to PbtO(2) and CMD pyruvate and categorized as hypoxic (PbtO(2) <20 mm Hg) versus nonhypoxic and hyperglycolytic (CMD pyruvate >119 μmol/L) versus nonhyperglycolytic. RESULTS: Median per patient samples with elevated CMD lactate was 54% (interquartile range, 11%-80%). Lactate elevations were more often attributable to cerebral hyperglycolysis (78%; interquartile range, 5%-98%) than brain hypoxia (11%; interquartile range, 4%-75%). Mortality was associated with increased percentage of samples with elevated lactate and brain hypoxia (28% [interquartile range 9%-95%] in nonsurvivors versus 9% [interquartile range 3%-17%] in survivors; P=0.02) and lower percentage of elevated lactate and cerebral hyperglycolysis (13% [interquartile range, 1%-87%] versus 88% [interquartile range, 27%-99%]; P=0.07). Cerebral hyperglycolytic lactate production predicted good 6-month outcome (odds ratio for modified Rankin Scale score, 0-3 1.49; CI, 1.08-2.05; P=0.016), whereas increased lactate with brain hypoxia was associated with a reduced likelihood of good outcome (OR, 0.78; CI, 0.59-1.03; P=0.08). CONCLUSIONS: Brain lactate is frequently elevated in subarachnoid hemorrhage patients, predominantly because of hyperglycolysis rather than hypoxia. A pattern of increased cerebral hyperglycolytic lactate was associated with good long-term recovery. Our data suggest that lactate may be used as an aerobic substrate by the injured human brain.